Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter November 23, 2021

Existence and uniqueness of positive solutions for fractional relaxation equation in terms of ψ-Caputo fractional derivative

  • Choukri Derbazi ORCID logo EMAIL logo , Zidane Baitiche and Akbar Zada

Abstract

This manuscript is committed to deal with the existence and uniqueness of positive solutions for fractional relaxation equation involving ψ-Caputo fractional derivative. The existence of solution is carried out with the help of Schauder’s fixed point theorem, while the uniqueness of the solution is obtained by applying the Banach contraction principle, along with Bielecki type norm. Moreover, two explicit monotone iterative sequences are constructed for the approximation of the extreme positive solutions to the proposed problem. Lastly, two examples are presented to support the obtained results.

2010 MSC: 34A08; 26A33

Corresponding author: Choukri Derbazi, Laboratory of Mathematics and Applied Sciences, University of Ghardaia, 47000 Ghardaia, Algeria, E-mail:

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

[1] R. Hilfer, Applications of Fractional Calculus in Physics, River Edge, NJ, World Scientific Publishing Co., Inc., 2000.10.1142/3779Search in Google Scholar

[2] F. Mainardi, Fractional Calculus and Waves in Linear Viscoelasticity, London, Imperial College Press, 2010.10.1142/p614Search in Google Scholar

[3] K. B. Oldham, “Fractional differential equations in electrochemistry,” Adv. Eng. Software, vol. 41, no. 1, pp. 9–12, 2010. https://doi.org/10.1016/j.advengsoft.2008.12.012.Search in Google Scholar

[4] I. Podlubny, Fractional Differential Equations, Mathematics in Science and Engineering, vol. 198, San Diego, CA, Academic Press, 1999.Search in Google Scholar

[5] J. Sabatier, O. P. Agrawal, and J. A. T. Machado, Advances In Fractional Calculus, Dordrecht, Springer, 2007.10.1007/978-1-4020-6042-7Search in Google Scholar

[6] V. E. Tarasov, Fractional Dynamics, Nonlinear Physical Science, Heidelberg, Springer, 2010.10.1007/978-3-642-14003-7Search in Google Scholar

[7] V. E. Tarasov, Handbook of Fractional Calculus with Applications, vol. 5, Berlin, De Gruyter, 2019.Search in Google Scholar

[8] R. Almeida, “A Caputo fractional derivative of a function with respect to another function,” Commun. Nonlinear Sci. Numer. Simulat., vol. 44, pp. 460–481, 2017. https://doi.org/10.1016/j.cnsns.2016.09.006.Search in Google Scholar

[9] F. Jarad, T. Abdeljawad, and D. Baleanu, “Caputo-type modification of the Hadamard fractional derivatives,” Adv. Differ. Equ., vol. 2012, p. 142, 2012. https://doi.org/10.1186/1687-1847-2012-142.Search in Google Scholar

[10] J. Vanterler da C. Sousa and E. Capelas de Oliveira, “On the ψ-Hilfer fractional derivative,” Commun. Nonlinear Sci. Numer. Simulat., vol. 60, pp. 72–91, 2018. https://doi.org/10.1016/j.cnsns.2018.01.005.Search in Google Scholar

[11] J. V. D. C. Sousa and E. C. de Oliveira, On the stability of a hyperbolic fractional partial differential equation, Differ. Equ. Dyn. Syst., 2019. https://doi.org/10.1007/s12591-019-00499-3.Search in Google Scholar

[12] R. Almeida, A. B. Malinowska, and M. T. T. Monteiro, “Fractional differential equations with a Caputo derivative with respect to a kernel function and their applications,” Math. Methods Appl. Sci., vol. 41, no. 1, pp. 336–352, 2018. https://doi.org/10.1002/mma.4617.Search in Google Scholar

[13] R. Almeida, M. Jleli, and B. Samet, “A numerical study of fractional relaxation-oscillation equations involving ψ-Caputo fractional derivative,” RACSAM, vol. 113, no. 3, pp. 1873–1891, 2019. https://doi.org/10.1007/s13398-018-0590-0.Search in Google Scholar

[14] C. Derbazi, Z. Baitiche, M. Benchohra, and A. Cabada, “Initial value problem for nonlinear fractional differential equations with ψ-Caputo derivative via monotone iterative technique,” Axioms, vol. 9, p. 57, 2020. https://doi.org/10.3390/axioms9020057.Search in Google Scholar

[15] C. Derbazi and Z. Baitiche, “Coupled systems of ψ-Caputo differential equations with initial conditions in Banach spaces,” Mediterr. J. Math., vol. 17, no. 5, p. 169, 2020. https://doi.org/10.1007/s00009-020-01603-6.Search in Google Scholar

[16] K. D. Kucche, A. D. Mali, and J. V. C. Sousa, “On the nonlinear Ψ-Hilfer fractional differential equations,” Comput. Appl. Math., vol. 38, no. 2, p. 73, 2019. https://doi.org/10.1007/s40314-019-0833-5.Search in Google Scholar

[17] A. Chidouh, A. Guezane-Lakoud, and R. Bebbouchi, “Positive solutions of the fractional relaxation equation using lower and upper solutions,” Vietnam J. Math., vol. 44, no. 4, pp. 739–748, 2016. https://doi.org/10.1007/s10013-016-0192-0.Search in Google Scholar

[18] N. Li and C. Wang, “New existence results of positive solution for a class of nonlinear fractional differential equations,” Acta Math. Sci. B, vol. 33, no. 3, pp. 847–854, 2013. https://doi.org/10.1016/s0252-9602(13)60044-2.Search in Google Scholar

[19] Z.-W. Lv, Positive solutions of m-point boundary value problems for fractional differential equations, Adv. Differ. Equ., vol. 2011, p. 571804, 2011. https://doi.org/10.1155/2011/571804.Search in Google Scholar

[20] H. A. Wahash, S. K. Panchal, and M. S. Abdo, “Positive solutions for generalized Caputo fractional differential equations with integral boundary conditions,” J. Math. Model., vol. 8, no. 4, pp. 393–414, 2020. https://doi.org/10.48185/jfcns.v1i1.78.Search in Google Scholar

[21] G. Wang, K. Pei, R. P. Agarwal, L. Zhang, and B. Ahmad, “Nonlocal Hadamard fractional boundary value problem with Hadamard integral and discrete boundary conditions on a half-line,” J. Comput. Appl. Math., vol. 343, pp. 230–239, 2018. https://doi.org/10.1016/j.cam.2018.04.062.Search in Google Scholar

[22] L. Zhang, B. Ahmad, and G. Wang, “Successive iterations for positive extremal solutions of nonlinear fractional differential equations on a half-line,” Bull. Aust. Math. Soc., vol. 91, no. 1, pp. 116–128, 2015. https://doi.org/10.1017/s0004972714000550.Search in Google Scholar

[23] S. Zhang, “The existence of a positive solution for a nonlinear fractional differential equation,” J. Math. Anal. Appl., vol. 252, no. 2, pp. 804–812, 2000. https://doi.org/10.1006/jmaa.2000.7123.Search in Google Scholar

[24] M. Al-Refai and M. Ali Hajji, “Monotone iterative sequences for nonlinear boundary value problems of fractional order,” Nonlinear Anal., vol. 74, no. 11, pp. 3531–3539, 2011. https://doi.org/10.1016/j.na.2011.03.006.Search in Google Scholar

[25] C. Chen, M. Bohner, and B. Jia, “Method of upper and lower solutions for nonlinear Caputo fractional difference equations and its applications,” Fractional Calc. Appl. Anal., vol. 22, no. 5, pp. 1307–1320, 2019. https://doi.org/10.1515/fca-2019-0069.Search in Google Scholar

[26] K. D. Kucche and A. D. Mali, “Initial time difference quasilinearization method for fractional differential equations involving generalized Hilfer fractional derivative,” Comput. Appl. Math., vol. 39, no. 1, p. 31, 2020. https://doi.org/10.1007/s40314-019-1004-4.Search in Google Scholar

[27] G. Wang, W. Sudsutad, L. Zhang, and J. Tariboon, “Monotone iterative technique for a nonlinear fractional q-difference equation of Caputo type,” Adv. Differ. Equ., vol. 2016, p. 211, 2016. https://doi.org/10.1186/s13662-016-0938-8.Search in Google Scholar

[28] S. Zhang, “Monotone iterative method for initial value problem involving Riemann–Liouville fractional derivatives,” Nonlinear Anal., vol. 71, nos. 5–6, pp. 2087–2093, 2009. https://doi.org/10.1016/j.na.2009.01.043.Search in Google Scholar

[29] S. Abbas, M. Benchohra, and G. M. N’Guérékata, Topics in Fractional Differential Equations, Developments in Mathematics, vol. 27, New York, Springer, 2012.10.1007/978-1-4614-4036-9Search in Google Scholar

[30] S. Abbas, M. Benchohra, and G. M. N’Guerekata, Advanced Fractional Differential and Integral Equations, Mathematics Research Developments, New York, Nova Science Publishers, Inc., 2015.Search in Google Scholar

[31] S. Abbas, M. Benchohra, J. R. Graef, and J. Henderson, Implicit Fractional Differential and Integral Equations, De Gruyter Series in Nonlinear Analysis and Applications, vol. 26, Berlin, De Gruyter, 2018.10.1515/9783110553819Search in Google Scholar

[32] Y. Zhou, Basic Theory of Fractional Differential Equations, Hackensack, NJ, World Scientific Publishing Co. Pte. Ltd., 2014.10.1142/9069Search in Google Scholar

[33] Y. Zhou, Fractional Evolution Equations and Inclusions: Analysis and Control, London, Elsevier/Academic Press, 2016.10.1016/B978-0-12-804277-9.50002-XSearch in Google Scholar

[34] A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, vol. 204, Amsterdam, Elsevier Science B.V., 2006.Search in Google Scholar

[35] R. Gorenflo, A. A. Kilbas, F. Mainardi, and S. V. Rogosin, Mittag–Leffler Functions, Related Topics and Applications, New York, Springer, 2014.10.1007/978-3-662-43930-2Search in Google Scholar

[36] Z. Wei, Q. Li, and J. Che, “Initial value problems for fractional differential equations involving Riemann–Liouville sequential fractional derivative,” J. Math. Anal. Appl., vol. 367, no. 1, pp. 260–272, 2010. https://doi.org/10.1016/j.jmaa.2010.01.023.Search in Google Scholar

[37] J. Vanterler da Costa Sousa and E. Capelas de Oliveira, “A Gronwall inequality and the Cauchy-type problem by means of ψ-Hilfer operator,” Differ. Equ. Appl., vol. 11, no. 1, pp. 87–106, 2019. https://doi.org/10.7153/dea-2019-11-02.Search in Google Scholar

[38] A. Granas and J. Dugundji, Fixed Point Theory, New York, NY, USA, Springer, 2003.10.1007/978-0-387-21593-8Search in Google Scholar

[39] J. Vanterler da C. Sousa and E. Capelas de Oliveira, Existence, uniqueness, estimation and continuous dependence of the solutions of a nonlinear integral and an integrodifferential equations of fractional order, arXiv:1806.01441, 2018.Search in Google Scholar

Received: 2020-10-07
Revised: 2021-02-23
Accepted: 2021-11-04
Published Online: 2021-11-23

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 26.10.2024 from https://www.degruyter.com/document/doi/10.1515/ijnsns-2020-0228/html
Scroll to top button