Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter November 11, 2022

Products of Toeplitz operators with angular symbols

  • Farouq S. Alshormani ORCID logo EMAIL logo and Hocine Guediri ORCID logo

Abstract

We study products of Toeplitz operators with angular symbols on the Bergman space over the upper half-plane. We establish necessary and sufficient conditions for the product of two such Toeplitz operators to give rise to a Toeplitz operator, especially in case one of the symbols is absolutely continuous or with bounded variation. Our conditions make appeal to Volterra and Fredholm integral equations, and to Duhamel–Mikusiński convolution products as well as to functional equations involving Stieltjes integrals. We illustrate our results by concrete examples showing that there are many angular symbols satisfying our natural conditions and ensuring Toeplitzness of such Toeplitz products.

MSC 2010: 47B35; 30H20

Funding statement: The authors would like to thank the Deanship of Scientific Research of King Saud University for funding and supporting this research through the initiative of DSR Graduate Students Research Support (GSR).

Acknowledgements

The authors would like to thank Professor Roland Duduchava and Professor Nikolai Vasilevski for reading the paper and for their helpful comments. The authors would also like to thank the referee for the valuable comments and suggestions.

References

[1] P. Ahern, On the range of the Berezin transform, J. Funct. Anal. 215 (2004), no. 1, 206–216. 10.1016/j.jfa.2003.08.007Search in Google Scholar

[2] P. Ahern and Z̆. C̆uc̆ković, A theorem of Brown–Halmos-type for Bergman space Toeplitz operators, J. Funct. Anal. 187 (2001), no. 1, 200–210. 10.1006/jfan.2001.3811Search in Google Scholar

[3] P. Ahern and Z̆. C̆uc̆ković, Some examples related to the Brown–Halmos theorem for the Bergman space, Acta Sci. Math. (Szeged) 70 (2004), no. 1–2, 373–378. Search in Google Scholar

[4] S. Axler and Z̆. C̆uc̆ković, Commuting Toeplitz operators with harmonic symbols, Integral Equations Operator Theory 14 (1991), no. 1, 1–12. 10.1007/BF01194925Search in Google Scholar

[5] A. Brown and P. R. Halmos, Algebraic properties of Toeplitz operators, J. Reine Angew. Math. 213 (1963/64), 89–102. 10.1007/978-1-4613-8208-9_19Search in Google Scholar

[6] Z̆. C̆uc̆ković, Berezin versus Mellin, J. Math. Anal. Appl. 287 (2003), no. 1, 234–243. 10.1016/S0022-247X(03)00546-8Search in Google Scholar

[7] Z̆. C̆uc̆ković and N. V. Rao, Mellin transform, monomial symbols, and commuting Toeplitz operators, J. Funct. Anal. 154 (1998), no. 1, 195–214. 10.1006/jfan.1997.3204Search in Google Scholar

[8] I. H. Dimovski, Convolutional Calculus, Math. Appl. (East European Series) 43, Kluwer Academic, Dordrecht, 1990. 10.1007/978-94-009-0527-6Search in Google Scholar

[9] K. Esmeral and E. A. Maximenko, C * -algebra of angular Toeplitz operators on Bergman spaces over the upper half-plane, Commun. Math. Anal. 17 (2014), no. 2, 151–162. Search in Google Scholar

[10] K. Esmeral, E. A. Maximenko and N. Vasilevski, C * -algebra generated by angular Toeplitz operators on the weighted Bergman spaces over the upper half-plane, Integral Equations Operator Theory 83 (2015), no. 3, 413–428. 10.1007/s00020-015-2243-4Search in Google Scholar

[11] S. Grudsky, A. Karapetyants and N. Vasilevski, Dynamics of properties of Toeplitz operators on the upper half-plane: Hyperbolic case, Bol. Soc. Mat. Mexicana (3) 10 (2004), no. 1, 119–138. Search in Google Scholar

[12] S. Grudsky, A. Karapetyants and N. Vasilevski, Dynamics of properties of Toeplitz operators on the upper half-plane: Parabolic case, J. Operator Theory 52 (2004), no. 1, 185–214. Search in Google Scholar

[13] H. Hochstadt, Integral Equations, Pure. Appl. Math., John Wiley & Sons, New York, 1973. Search in Google Scholar

[14] R. Kannan and C. K. Krueger, Advanced Analysis on the Real Line, Universitext, Springer, New York, 1996. 10.1007/978-1-4613-8474-8Search in Google Scholar

[15] A. Karapetyants and I. Louhichi, Fractional integrodifferentiation and Toeplitz operators with vertical symbols, Operator Algebras, Toeplitz Operators and Related Topics, Oper. Theory Adv. Appl. 279, Birkhäuser/Springer, Cham (2020), 175–187. 10.1007/978-3-030-44651-2_13Search in Google Scholar

[16] R. Kress, Linear Integral Equations, 3rd ed., Appl. Math. Sci. 82, Springer, New York, 2014. 10.1007/978-1-4614-9593-2Search in Google Scholar

[17] I. Louhichi, E. Strouse and L. Zakariasy, Products of Toeplitz operators on the Bergman space, Integral Equations Operator Theory 54 (2006), no. 4, 525–539. 10.1007/s00020-005-1369-1Search in Google Scholar

[18] J. G. Mikusiński, Sur les fondements du calcul opératoire, Studia Math. 11 (1949), 41–70. 10.4064/sm-11-1-41-70Search in Google Scholar

[19] J. G. Mikusiński and C. Ryll-Nardzewski, Sur le produit de composition, Studia Math. 12 (1951), 51–57. 10.4064/sm-12-1-51-57Search in Google Scholar

[20] H. L. Royden and P. M. Fitzpatrick, Real Analysis, 4th ed., Printice-Hall, Boston, 2010. Search in Google Scholar

[21] S. G. Samko, A. A. Kilbas and O. I. Marichev, Fractional Integrals and Derivatives. Theory and Applications, Gordon and Breach Science, Yverdon, 1993. Search in Google Scholar

[22] H. M. Srivastava and R. G. Buschman, Theory and Applications of Convolution Integral Equations, Math. Appl. 79, Kluwer Academic, Dordrecht, 1992. 10.1007/978-94-015-8092-2Search in Google Scholar

[23] K. Stroethoff and D. Zheng, Products of Hankel and Toeplitz operators on the Bergman space, J. Funct. Anal. 169 (1999), no. 1, 289–313. 10.1006/jfan.1999.3489Search in Google Scholar

[24] N. L. Vasilevski, Commutative Algebras of Toeplitz Operators on the Bergman Space, Oper. Theory Adv. Appl. 185, Birkhäuser, Basel, 2008. 10.1090/conm/462/09065Search in Google Scholar

[25] K. Zhu, Operator Theory in Function Spaces, 2nd ed., Math. Surveys Monogr. 138, American Mathematical Society, Providence, 2007. 10.1090/surv/138Search in Google Scholar

[26] N. Zorboska, The Berezin transform and radial operators, Proc. Amer. Math. Soc. 131 (2003), no. 3, 793–800. 10.1090/S0002-9939-02-06691-1Search in Google Scholar

Received: 2022-04-07
Accepted: 2022-05-31
Published Online: 2022-11-11
Published in Print: 2023-02-01

© 2022 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 28.10.2024 from https://www.degruyter.com/document/doi/10.1515/gmj-2022-2198/html
Scroll to top button