2023 Volume 13 Issue 3
Article Contents

Nitesh Verma, Sarvesh Kumar. VIRTUAL ELEMENT APPROXIMATIONS FOR NON-STATIONARY NAVIER-STOKES EQUATIONS ON POLYGONAL MESHES[J]. Journal of Applied Analysis & Computation, 2023, 13(3): 1155-1177. doi: 10.11948/20210381
Citation: Nitesh Verma, Sarvesh Kumar. VIRTUAL ELEMENT APPROXIMATIONS FOR NON-STATIONARY NAVIER-STOKES EQUATIONS ON POLYGONAL MESHES[J]. Journal of Applied Analysis & Computation, 2023, 13(3): 1155-1177. doi: 10.11948/20210381

VIRTUAL ELEMENT APPROXIMATIONS FOR NON-STATIONARY NAVIER-STOKES EQUATIONS ON POLYGONAL MESHES

  • This article deals with the development of virtual element methods for the approximation of non-stationary Navier-Stokes equation. The proposed lowest order virtual element spaces for velocity and pressure are constructed in such a way that the inf-sup conditions holds, and easy to implement in comparison with other pair of spaces which satisfy the inf-sup condition. For time discretization, the backward Euler scheme is employed, and both semi and fully discrete schemes are discussed and analyzed. With the help of certain projection operators, error estimates are established in suitable norms for both semi and fully discretized schemes. Moreover, several numerical experiments are conducted to verify the theoretical rate of convergence and to observe the computational efficiency of the proposed schemes.

    MSC: 35Q30, 65M12, 65M15, 65M99
  • 加载中
  • [1] H. Abboud, V. Girault and T. Sayah, A second order accuracy for a full discretized time-dependent Navier-Stokes equations by a two-grid scheme, Numer. Math., 2009, 114(2), 189–231. doi: 10.1007/s00211-009-0251-5

    CrossRef Google Scholar

    [2] R. A. Adams, Sobolev spaces, Pure and applied mathematics, Academic Press, New York/London, 1975, 65.

    Google Scholar

    [3] B. Ahmad, A. Alsaedi, F. Brezzi, L. D. Marini and A. Russo, Equivalent projectors for virtual element methods, Comput. Math. Appl., 2013, 66, 376–391. doi: 10.1016/j.camwa.2013.05.015

    CrossRef Google Scholar

    [4] N. Ahmed, A. Linke and C. Merdon, On Really Locking–Free Mixed Finite Element Methods for the Transient Incompressible Stokes Equations, SIAM J. Numer. Anal., 2018, 56(1), 185–209. doi: 10.1137/17M1112017

    CrossRef Google Scholar

    [5] P. F. Antonietti, L. Beirão da Veiga, D. Mora and M. Verani, A stream virtual element formulation of the Stokes problem on polygonal meshes, SIAM J. Numer. Anal., 2014, 52, 386–404. doi: 10.1137/13091141X

    CrossRef Google Scholar

    [6] D. Adak, E. Natarajan and S. Kumar, Convergence analysis of virtual element methods for semilinear parabolic problems on polygonal meshes, Numer. Methods Partial Differential Eq., 2018, 35, 222–245.

    Google Scholar

    [7] D. Adak, E. Natarajan and S. Kumar, Virtual element method for semilinear hyperbolic problems on polygonal meshes, Int. J. Comput. Math., 2019, 96(5), 971–991. doi: 10.1080/00207160.2018.1475651

    CrossRef Google Scholar

    [8] L. Beirão da Veiga, F. Brezzi, A. Cangiani, G. Manzini, L. D. Marini and A. Russo, Basic principles of virtual element methods, Math. Models Methods Appl. Sci., 2013, 23(1), 199–214. doi: 10.1142/S0218202512500492

    CrossRef Google Scholar

    [9] L. Beirão da Veiga, F. Brezzi, L. D. Marini and A. Russo, Virtual Element Method for general second-order elliptic problems on polygonal meshes, Math. Models Methods Appl. Sci., 2016, 26(4), 729–750. doi: 10.1142/S0218202516500160

    CrossRef Google Scholar

    [10] L. Beir ao da Veiga, C. Lovadina and G. Vacca, Divergence free virtual elements for the Stokes problem on polygonal meshes, ESAIM: Math. Model. Numer. Anal., 2017, 51, 509–535. doi: 10.1051/m2an/2016032

    CrossRef Google Scholar

    [11] L. Beir ao da Veiga, C. Lovadina and G. Vacca, Virtual Elements for the Navier–Stokes Problem on Polygonal Meshes, 2018, 56(3), 1210–1242.

    Google Scholar

    [12] L. Beir ao da Veiga, D. Mora and G. Vacca, The Stokes Complex for Virtual Elements with Application to Navier–Stokes Flows, J. Sci. Comput., 2019, 81, 990–1018. doi: 10.1007/s10915-019-01049-3

    CrossRef Google Scholar

    [13] L. Beir ao da Veiga, C. Canuto, R. H. Nochetto and G. Vacca, Equilibrium analysis of an immersed rigid leaflet by the virtual element method, Math. Models Methods Appl. Sci., 2021, 31(7), 1323–1372. doi: 10.1142/S0218202521500275

    CrossRef Google Scholar

    [14] L. Beir ao da Veiga, F. Dassi and G. Vacca, Vorticity-stabilized virtual elements for the Oseen equation, Math. Models Methods Appl. Sci., 2021, 31(14), 3009–3052. doi: 10.1142/S0218202521500688

    CrossRef Google Scholar

    [15] P. B. Bochev, M. D. Gunzburger and J. N. Shadid, On inf–sup stabilized finite element methods for transient problems, Comput. Methods Appl. Mech. Engrg., 2004, 193, 1471–1489. doi: 10.1016/j.cma.2003.12.034

    CrossRef Google Scholar

    [16] F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods, Springer Verlag, New York, 1991.

    Google Scholar

    [17] S. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods, Springer Verlag, New York, 2008.

    Google Scholar

    [18] R. Bürger, S. Kumar, D. Mora, R. Ruiz-Baier and N. Verma, Virtual element methods for the three-field formulation of time-dependent linear poroelasticity, Adv. Comput. Math., 2021. DOI: 10.1007/s10444-020-09826-7.

    CrossRef Google Scholar

    [19] E. Burman and M. A. Fernández, Continuous interior penalty finite element method for the time-dependent Navier–Stokes equations: space discretization and convergence, Numer. Math., 2007, 107, 39–77. doi: 10.1007/s00211-007-0070-5

    CrossRef Google Scholar

    [20] J. Coulet, I. Faille, V. Girault, N. Guy and F. Nataf, A fully coupled scheme using virtual element method and finite volume for poroelasticity, Comput. Geosci., 2020, 24, 381–403. doi: 10.1007/s10596-019-09831-w

    CrossRef Google Scholar

    [21] D. Frerichs and C. Merdon, Divergence–preserving reconstructions on polygons and a really pressure–robust virtual element method for the Stokes problem, IMA J. Numer. Anal., 2020. DOI: 10.1093/imanum/draa073.

    CrossRef Google Scholar

    [22] G. N. Gatica, M. Munar and F. A. Sequeira, A mixed virtual element method for the Navier–Stokes equations, Math. Models Methods Appl. Sci., 2018, 28(14), 2719–2762. doi: 10.1142/S0218202518500598

    CrossRef Google Scholar

    [23] V. Girault and P. A. Raviart, Finite Element Methods for Navier–Stokes Equations: Theory and Algorithms, Springer Series in Computational Mathematics, Springer-Verlag Berlin Heidelberg, 1986.

    Google Scholar

    [24] Y. He, A fully discrete stabilized finite-element method for the time-dependent Navier–Stokes problem, IMA J. Numer. Anal., 2003, 23, 665–691. doi: 10.1093/imanum/23.4.665

    CrossRef Google Scholar

    [25] Y. He and W. Sun, Stabilized Finite Element method based on the Crank–Nicolson Extrapolation scheme for the time–dependent Navier–Stokes equations, Math. Comput., 2007, 76, 115–136. doi: 10.1090/S0025-5718-06-01886-2

    CrossRef Google Scholar

    [26] G. He, Y. He and Z. Chen, A penalty finite volume method for the transient Navier–Stokes equations, Appl. Numer. Math., 2008, 58(11), 1583–1613. doi: 10.1016/j.apnum.2007.09.006

    CrossRef Google Scholar

    [27] J. G. Heywood and R. Rannacher, Finite Element Approximation of the Nonstationary Navier-Stokes Problem. I. Regularity of Solutions and Second-Order Error Estimates for Spatial Discretization, SIAM J. Numer. Anal., 1982, 19(2), 275–311. doi: 10.1137/0719018

    CrossRef Google Scholar

    [28] J. G. Heywood and R. Rannacher, Finite element approximation of the nonstationary Navier–Stokes problem. $IV$. Error analysis for second-order time discretization, SIAM J. Numer. Anal., 1990, 27, 353–384. doi: 10.1137/0727022

    CrossRef $IV$. Error analysis for second-order time discretization" target="_blank">Google Scholar

    [29] D. Irisarri and G. Hauke, Stabilized virtual element methods for the unsteady incompressible Navier–Stokes equations, Calcolo, 2019. DOI: 10.1007/s10092-019-0332-5.

    CrossRef Google Scholar

    [30] Y. Jiang, L. Mei and H. Wei, A stabilized finite element method for transient Navier–Stokes equations based on two local Gauss integrations, Int. J. Numer. Meth. Fluids, 2011, 70, 713–723.

    Google Scholar

    [31] V. John, Finite Element Methods for Incompressible Flow Problems, Springer Series in Computational Mathematics, Springer International Publishing, 2016.

    Google Scholar

    [32] S. Kumar and R. Ruiz-Baier, Equal Order Discontinuous Finite Volume Element Methods for the Stokes Problem, J. Sci. Comput., 2015, 65, 956–978. doi: 10.1007/s10915-015-9993-7

    CrossRef Google Scholar

    [33] J. Li, Y. He and Z. Chen, A new stabilized finite element method for the transient Navier–Stokes equations, Comput. Methods Appl. Mech. Engg., 2007, 197, 22–35. doi: 10.1016/j.cma.2007.06.029

    CrossRef Google Scholar

    [34] X. Liu and Z. Chen, The nonconforming virtual element method for the Navier–Stokes equations, Adv. Comput. Math., 2019, 45, 51–74. doi: 10.1007/s10444-018-9602-z

    CrossRef Google Scholar

    [35] X. Liu, R. Li and Z. Chen, A virtual element method for the coupled Stokes-Darcy problem with the Beaver-Joseph-Saffman interface condition, Calcolo, 2019. DOI: 10.1007/s10092-019-0345-0.

    CrossRef Google Scholar

    [36] X. Lu and P. Lin, Error estimate of the P1 nonconforming finite element method for the penalized unsteady Navier–Stokes equations, Numer. Math., 2010, 115, 261–287. doi: 10.1007/s00211-009-0277-8

    CrossRef Google Scholar

    [37] L. Mu and X. Ye, A finite volume method for solving Navier–Stokes problems, Nonlinear Anal., 2011, 74(17), 6686–6695. doi: 10.1016/j.na.2011.06.048

    CrossRef Google Scholar

    [38] M. A. Olshanskii and A. Reusken, Analysis of a Stokes interface problem, Numer. Math., 2006, 103(1), 129–149. doi: 10.1007/s00211-005-0646-x

    CrossRef Google Scholar

    [39] H. Qiu, C. Xue and L. Xue, Low‐order stabilized finite element methods for the unsteady Stokes/Navier–Stokes equations with friction boundary conditions, Math. Method. Appl. Sci., 2018, 41, 2119–2139. doi: 10.1002/mma.4738

    CrossRef Google Scholar

    [40] C. Talischi, G. H. Paulino, A. Pereira and I. F. Menezes, Polymesher: a general-purpose mesh generator for polygonal elements written in matlab, Struct. Multidiscip. Optim., 2012, 45(3), 309–328. doi: 10.1007/s00158-011-0706-z

    CrossRef Google Scholar

    [41] X. Tang, Z. Liu, B. Zhang and M. Feng, On the locking-free three-field virtual element methods for Biot's consolidation model in poroelasticity, ESAIM: Math. Model. Numer. Anal., 2020. DOI: 10.1051/m2an/2020064.

    CrossRef Google Scholar

    [42] R. Temam, Navier-Stokes Equations. Theory and Numerical Analysis, North-Holland, Amsterdam, 1977.

    Google Scholar

    [43] G. Vacca and L. Beir ao da Veiga, Virtual element methods for parabolic problems on polygonal meshes, Numer. Methods Partial Differential Equations, 2015, 31, 2110–2134. doi: 10.1002/num.21982

    CrossRef Google Scholar

    [44] G. Vacca, An $H^1 $-conforming virtual element for Darcy and Brinkman equations, Math. Models Methods Appl. Sci., 2018, 28(1), 159–194. doi: 10.1142/S0218202518500057

    CrossRef $H^1 $-conforming virtual element for Darcy and Brinkman equations" target="_blank">Google Scholar

    [45] N. Verma, B. Gómez-Vargas, L. M. De Oliveira Vilaca, S. Kumar and R. Ruiz-Baier, Well-posedness and discrete analysis for advection-diffusion-reaction in poroelastic media, Applic. Anal., 2020. DOI: 10.1080/00036811.2021.1877677.

    CrossRef Google Scholar

    [46] N. Verma and S. Kumar, Virtual element approximations for two species model of the advection-diffusion-reaction in poroelastic media, Mathematical Modelling and Analysis, 2022 (Accepted).

    Google Scholar

    [47] N. Verma and S. Kumar, Lowest order virtual element approximations for transient Stokes problem on polygonal meshes, Calcolo, 2021. DOI: 10.1007/s10092-021-00440-7.

    CrossRef Google Scholar

    [48] C. Xu, D. Shi and X. Liao, Low order nonconforming mixed finite element method for nonstationary incompressible Navier–Stokes equations, Appl. Math. Mech. Engl. Ed., 2016, 37(8), 1095–1112. doi: 10.1007/s10483-016-2120-8

    CrossRef Google Scholar

    [49] X. Zhang and M. Feng, A projection-based stabilized virtual element method for the unsteady incompressible Brinkman equations, Appl. Math. Comput., 2021. DOI: 10.1016/j.amc.2021.126325.

    CrossRef Google Scholar

Figures(2)  /  Tables(1)

Article Metrics

Article views(1653) PDF downloads(382) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint