2023 Volume 13 Issue 2
Article Contents

Jing Zhang, Jiao Jiang, Xiaotian Wu. MATHEMATICAL SOLUTION OF A PHARMACOKINETIC MODEL WITH SIMULTANEOUS FIRST-ORDER AND HILL-TYPE ELIMINATION[J]. Journal of Applied Analysis & Computation, 2023, 13(2): 623-643. doi: 10.11948/20210365
Citation: Jing Zhang, Jiao Jiang, Xiaotian Wu. MATHEMATICAL SOLUTION OF A PHARMACOKINETIC MODEL WITH SIMULTANEOUS FIRST-ORDER AND HILL-TYPE ELIMINATION[J]. Journal of Applied Analysis & Computation, 2023, 13(2): 623-643. doi: 10.11948/20210365

MATHEMATICAL SOLUTION OF A PHARMACOKINETIC MODEL WITH SIMULTANEOUS FIRST-ORDER AND HILL-TYPE ELIMINATION

  • Corresponding author: Email: jiaojiang@shmtu.edu.cn(J. Jiang) 
  • Fund Project: This work was supported by National Natural Science Foundation of China (Nos. 12271346, 12071300)
  • Mathematical studies on pharmacokinetic models are essentially important for drug development and optimal dose design. Considering the interaction between drug molecules and their receptors, the elimination of drug molecules can exhibit Hill-type kinetics. In this paper, motivated by the recombinant human granulocyte colony-stimulating factor (G-CSF) and the transcendent Lambert $W$ function, we have studied the mathematical solutions of a one-compartment nonlinear pharmacokinetic model with simultaneous first-order and Hill-type $(n=2)$ elimination for the case of intravenous bolus administration. By introducing three well-defined transcendental functions depending on three different scenarios, we have established the closed-form precise solutions of time course of drug concentration, which is a method to calculate drug concentrations at any time point. As a result, we also have derived the explicit expressions of some key pharmacokinetic surrogates such as the elimination half-life $t_{1/2}$ and total drug exposure (i.e. area under the concentration curve (AUC)), which are found as dose-dependent. Finally, a case study of a G-CSF drug is quantitatively illustrated to delineate our theoretical results, including the elimination half-life and AUC for different dosages. Our findings can provide an effective guidance for drugs with simultaneous first-order and Hill-type $(n=2)$ elimination in clinical pharmacology.

    MSC: 34A05, 92C45, 34A34
  • 加载中
  • [1] H. Abeliovich, On Hill coefficients and subunit interaction energies, J. Math. Biol., 2016, 73, 1399–1411. doi: 10.1007/s00285-016-1001-9

    CrossRef Google Scholar

    [2] C. Barton, J. C. Kouokam, H. Hurst and K. E. Palmer, Pharmacokinetics of the antiviral lectin griffithsin administered by different routes indicates multiple potential uses, Viruses, 2016, 8(12), 1–12.

    Google Scholar

    [3] A. Bellelli and E. Caglioti, On the measurement of cooperativity and the physico-chemical meaning of the hill coefficient, Curr. Protein Pept. Sc., 2019, 20(9), 861–872. doi: 10.2174/1389203720666190718122404

    CrossRef Google Scholar

    [4] G. B. Birrell, T. O. Zaikova, A. V. Rukavishnikov, J. F. W. Keana and O. H. Griffith, Allosteric interactions within subsites of a monomeric enzyme: kinetics of fluorogenic substrates of PI-specific phospholipase C, Biophys. J., 2003, 84(5), 3264–3275. doi: 10.1016/S0006-3495(03)70051-4

    CrossRef Google Scholar

    [5] R. M. Corless, G. H. Gonneet, D. E. G. Hare, D. J. Jeffrey and D. E. Knuth, On the Lambert W function, Adv. Comput. Math., 1996, 5, 329–359. doi: 10.1007/BF02124750

    CrossRef Google Scholar

    [6] M. Craig, A. R. Humphries and M. C. Mackey, A mathematical model of granulopoiesis incorporating the negative feedback dynamics and kinetics of G-CSF/neutrophil binding and internalization, Bull. Math. Biol., 2016, 78(12), 2304–2357. doi: 10.1007/s11538-016-0179-8

    CrossRef Google Scholar

    [7] M. Craig, A. R. Humphries, F. Nekka, J. BšŠlair, J. Li and M. C. Mackey, Neutrophil dynamics during concurrent chemotherapy and G-CSF administration: mathematical modelling guides dose optimisation to minimize neutropenia, J. Theor. Biol., 2015, 385, 77–89. doi: 10.1016/j.jtbi.2015.08.015

    CrossRef Google Scholar

    [8] J. W. Fisher, Physiologically based pharmacokinetic models for trichloroethylene and its oxidative metabolites, Environ. Health Persp., 2000, 108, 265–273.

    Google Scholar

    [9] M. Gibaldi and D. Perrier, Pharmacokinetics, 2nd edn, Informa Healthcare, New York, 2007.

    Google Scholar

    [10] K. R. Godfrey and W. R. Fitch, On the identification of Michaelis-Menten elimination parameters form a single dose-response curve, J. Pharmacokin. Biopharm., 1984, 12, 193–221. doi: 10.1007/BF01059278

    CrossRef Google Scholar

    [11] S. Goutelle, M. Maurin, F. Rougier, X. Barbaut, L. Bourguignon, M. Ducher and P. Maire, The Hill equation: a review of its capabilities in pharmacological modelling, Fund. Clin. Pharmacol., 2008, 22(6), 633–648. doi: 10.1111/j.1472-8206.2008.00633.x

    CrossRef Google Scholar

    [12] A. V. Hill, The possible effects of the aggregation of the molecules of haemoglobin on its dissociation curves, J. Physiol., 1910, 40, 4–7.

    Google Scholar

    [13] J. B. Houston and K. E. Kenworthy, In vitro-in vivo scaling of cytochrome CYP kinetic data not consistent with the classical Michaelis-Menten model, Drug Metab. Dispos., 1999, 28, 246–254.

    Google Scholar

    [14] M. Jie and J. P. Keener, The computation of biomarkers in pharmacokinetics with the aid of singular perturbation methods, J. Math. Biol., 2018, 77(5), 1407–1430. doi: 10.1007/s00285-018-1257-3

    CrossRef Google Scholar

    [15] J. E. Layton and N. E. Hall, The interaction of G-CSF with its receptor, Front. Biosci., 2006, 11(1), 3181–3181. doi: 10.2741/2041

    CrossRef Google Scholar

    [16] S. Pintip, A. Suvaporn, W. Noppadol, J. Watsamon, S. Jiratchaya, T. Tuangtip, C. Tanittha, W. Thitima and P. Thanyawee, Optimizing vancomycin use through 2-point AUC-based therapeutic drug monitoring in pediatric patients, J. Clin. Pharmacol., 2019, 59(12), 1597–1605. doi: 10.1002/jcph.1498

    CrossRef Google Scholar

    [17] R. Richter, A. Jochheim-Richter, F. Ciuculescu, K. Kollar, E. Seifried, U. Forssmann, D. Verzijl, M. J. Smit, X. Blanchet and P. V. Hundelshausen, Identification and characterization of circulating variants of CXCL12 from human plasma: effects on chemotaxis and mobilization of hematopoietic stem and progenitor cells, Stem Cells Dev., 2014, 23(16), 1959–1974. doi: 10.1089/scd.2013.0524

    CrossRef Google Scholar

    [18] G. Rosati, D. Ferrara and L. Manzione, New perspectives in the treatment of advanced or metastatic gastric cancer, World J. Gastroentero., 2009, 15(22), 2689–2692. doi: 10.3748/wjg.15.2689

    CrossRef Google Scholar

    [19] D. Scotcher, N. Melillo, S. Tadimalla, A. S. Darwich and A. Galetin, Physiologically based pharmacokinetic modeling of transporter-mediated hepatic disposition of imaging biomarker gadoxetate in rats, Mol. Pharmaceut., 2021, 18(8), 2997–3009. doi: 10.1021/acs.molpharmaceut.1c00206

    CrossRef Google Scholar

    [20] T. Sheng, X. Fan, G. Zheng, F. Dai and Z. Chen, Cooperative binding and stepwise encapsulation of drug molecules by sulfonylcalixarene-based metal-organic supercontainers, Molecules, 2020, 25(11), 1–10.

    Google Scholar

    [21] S. Tang and Y. Xiao, One-compartment model with Michaelis-Menten elimination kinetics and therapeutic window: an analytical approach, J. Pharmacokinet Pharmacodyn, 2007, 34, 807–827. doi: 10.1007/s10928-007-9070-4

    CrossRef Google Scholar

    [22] P. Wiczling, P. Lowe, E. Pigeolet, F. Lš¹dicke, S. Balser and D. W. Krzyzanski, Population pharmacokinetic modelling of filgrastim in healthy adults following intravenous and subcutaneous administrations, Clin Pharmacokinet, 2009, 48(12), 817–826. doi: 10.2165/11318090-000000000-00000

    CrossRef Google Scholar

    [23] X. Wu and J. Li, Morphism classification of a family of transcendent functions arising from pharmacokinetic modelling, Math. Method. Appl. Sci., 2021, 44(1), 1–13. doi: 10.1002/mma.6548

    CrossRef Google Scholar

    [24] X. Wu, J. Li and F. Nekka, Closed form solutions and dominant elimination pathways of simultaneous first-order and Michaelis-Menten kinetics, J. Pharmacokinet Pharmacodyn, 2015, 42, 151–161. doi: 10.1007/s10928-015-9407-3

    CrossRef Google Scholar

    [25] F. Yan, H. Yuan, J. Liu, L. Tao, J. Lin and B. Z. Giuseppe, Bayesian inference for generalized linear mixed model based on the multivariatet distribution in population pharmacokinetic study, PLoS ONE, 2013, 8(3), 1–10.

    Google Scholar

    [26] H. Yu and K. Zhang, Stability of peakons for a nonlinear generalization of the Camassa-Holm equation, J. Nonl. Mod. Anal., 2022, 4(1), 141–152.

    Google Scholar

Figures(8)  /  Tables(1)

Article Metrics

Article views(1909) PDF downloads(329) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint