2022 Volume 12 Issue 2
Article Contents

Jian-Guo Liu, Abdul-Majid Wazwaz, Wen-Hui Zhu. SOLITARY AND LUMP WAVES INTERACTION IN VARIABLE-COEFFICIENT NONLINEAR EVOLUTION EQUATION BY A MODIFIED ANSÄTZ WITH VARIABLE COEFFICIENTS[J]. Journal of Applied Analysis & Computation, 2022, 12(2): 517-532. doi: 10.11948/20210178
Citation: Jian-Guo Liu, Abdul-Majid Wazwaz, Wen-Hui Zhu. SOLITARY AND LUMP WAVES INTERACTION IN VARIABLE-COEFFICIENT NONLINEAR EVOLUTION EQUATION BY A MODIFIED ANSÄTZ WITH VARIABLE COEFFICIENTS[J]. Journal of Applied Analysis & Computation, 2022, 12(2): 517-532. doi: 10.11948/20210178

SOLITARY AND LUMP WAVES INTERACTION IN VARIABLE-COEFFICIENT NONLINEAR EVOLUTION EQUATION BY A MODIFIED ANSÄTZ WITH VARIABLE COEFFICIENTS

  • In this work, we examine variable-coefficient nonlinear evolution equations that often describe complex physical models more than constant coefficient models. A modified ansätz with variable coefficients is used for studying the solitary and lump waves interaction in these variable-coefficient nonlinear evolution equations. We discuss the variable-coefficient Kadomtsev-Petviashvili equation to achieve this goal. We present lump wave and interaction solutions between solitary and lump waves for this model. By choosing appropriate values of the variable coefficients, 3d plots and corresponding contour plots are drawn to illustrate the dynamical behaviors of the obtained solutions.

    MSC: 35C08, 68M07, 33F10
  • 加载中
  • [1] P. A. Clarkson, New similarity solutions for the modified boussinesq equation, J. Phys. A, 1999, 22(13), 2355-2367.

    Google Scholar

    [2] S. Chen and W. Ma, Lump solutions to a generalized Bogoyavlensky-Konopelchenko equation, Front. Math. China, 2018, 13(3), 525-534. doi: 10.1007/s11464-018-0694-z

    CrossRef Google Scholar

    [3] S. Chen and W. Ma, Lump solutions of a generalized Calogero-Bogoyavlenskii-Schiff equation, Comput. Math. Appl., 2018, 76(7), 1680-1685. doi: 10.1016/j.camwa.2018.07.019

    CrossRef Google Scholar

    [4] Y. Chen, Y. Tang, J. Manafian et al., Dark wave, rogue wave and perturbation solutions of Ivancevic option pricing model, Nonlinear Dyn., 2021, 105, 2539-2548. doi: 10.1007/s11071-021-06642-6

    CrossRef Google Scholar

    [5] Z. Dai, S. Lin, H. Fu et al., Exact three-wave solutions for the KP equation, Appl. Math. Comput., 2010, 216, 1599-1604.

    Google Scholar

    [6] Y. Ding, M. S. Osman and A. M. Wazwaz, Abundant complex wave solutions for the nonautonomous Fokas-Lenells equation in presence of perturbation terms, Optik, 2019, 181, 503-513. doi: 10.1016/j.ijleo.2018.12.064

    CrossRef Google Scholar

    [7] J. R. Franz, P. M. Kintner and J. S. Pickett, POLAR observations of coherent electric field structures, Geophys. Res. Lett., 1998, 25(8), 1277-1280. doi: 10.1029/98GL50870

    CrossRef Google Scholar

    [8] F. Guo and J. Lin, Interaction solutions between lump and stripe soliton to the (2+1)-dimensional Date-Jimbo-Kashiwara-Miwa equation, Nonlinear Dyn., 2019, 96, 1233-1241. doi: 10.1007/s11071-019-04850-9

    CrossRef Google Scholar

    [9] F. Güngör and P. Winternitz, Generalized Kadomtsev-Petviashvili equation with an infinite-dimensional symmetry algebra, J. Math. Anal. Appl., 2002, 276, 314-328. doi: 10.1016/S0022-247X(02)00445-6

    CrossRef Google Scholar

    [10] B. Guo, Nonlinear Evolution Equations, Shanghai Sci. -Tech. Edu. Publishing House, Shanghai, 1995.

    Google Scholar

    [11] J. He, L. Wang, L. Li et al., Few-cycle optical rogue waves: Complex modified Korteweg-de Vries equation, Phys. Rev. E, 2014, 89, Article ID: 062917.

    Google Scholar

    [12] J. He, S. Xu and Y. Cheng, The rational solutions of the mixed nonlinear Schrödinger equation, AIP Adv., 2014, 5(1), Article ID: 017105.

    Google Scholar

    [13] K. Hosseini, M. S. Osman, M. Mirzazadeh et al., Investigation of different wave structures to the generalized third-order nonlinear Scrödinger equation, Optik, 2020, 206, Article ID: 164259. doi: 10.1016/j.ijleo.2020.164259

    CrossRef Google Scholar

    [14] K. B. Hemonta, S. A. Most, M. H. Uddin et al., Physically significant wave solutions to the Riemann wave equations and the Landau-Ginsburg-Higgs equation, Results Phys., 2021, 27, Article ID: 104517. doi: 10.1016/j.rinp.2021.104517

    CrossRef Google Scholar

    [15] X. Jia, B. Tian, Z. Du et al., Lump and rogue waves for the variable-coefficient Kadomtsev-Petviashvili equation in a fluid, Mod. Phys. Lett. B, 2018, 32(10), Article ID: 1850086. doi: 10.1142/S0217984918500860

    CrossRef Google Scholar

    [16] K. A. Khalid, C. Carlo, J. F. Gómez-Aguilar et al., Analytical and numerical study of the DNA dynamics arising in oscillator-chain of Peyrard-Bishop model, Chaos Soliton. Frac., 2020, 139, Article ID: 110089. doi: 10.1016/j.chaos.2020.110089

    CrossRef Google Scholar

    [17] M. A. Kayum, R. Ripan, M. A. Akbar et al., Study of W-shaped, V-shaped, and other type of surfaces of the ZK-BBM and GZD-BBM equations, Opt. Quant. Electron., 2021, 53, 387. doi: 10.1007/s11082-021-03031-6

    CrossRef Google Scholar

    [18] Y. Li and J. Liu, New periodic solitary wave solutions for the new (2+1)-dimensional Korteweg-de Vries equation, Nonlinear Dyn., 2018, 91(1), 497-504. doi: 10.1007/s11071-017-3884-4

    CrossRef Google Scholar

    [19] W. Liu, X. Zheng, C. Wang et al., Fission and fusion collision of high-order lumps and solitons in a (3+1)-dimensional nonlinear evolution equation, Nonlinear Dyn., 2019, 96, 2463-2473. doi: 10.1007/s11071-019-04935-5

    CrossRef Google Scholar

    [20] J. Liu, L. Tu, M. Cheng et al., Mechanisms for oral absorption enhancement of drugs by nanocrystals, J. Drug Deliv. Sci. Tec., 2020, 56, Article ID: 101607. doi: 10.1016/j.jddst.2020.101607

    CrossRef Google Scholar

    [21] M. Lin and W. Duan, The Kadomtsev-Petviashvili (KP), MKP, and coupled KP equations for two-ion-temperature dusty plasmas, Chaos Soliton. Fract., 2005, 23, 929-937. doi: 10.1016/S0960-0779(04)00342-X

    CrossRef Google Scholar

    [22] W. Liu, A. M. Wazwaz and X. Zheng, High-order breathers, lumps, and semirational solutions to the (2+1)-dimensional Hirota-Satsuma-Ito equation, Phys. Scr., 2019, 94, Article ID: 075203.

    Google Scholar

    [23] J. Liu, M. S. Osman, W. Zhu et al., The general bilinear techniques for studying the propagation of mixed-type periodic and lump-type solutions in a homogenous-dispersive medium, AIP Adv., 2020, 10(10), Article ID: 1053254.

    Google Scholar

    [24] W. Ma, A search for lump solutions to a combined fourth-order nonlinear PDE in (2+1)-dimensions, J. Appl. Anal. Comput., 2019, 9(4), 1319-1332.

    Google Scholar

    [25] X. Meng, B. Tian and H. Zhang, Pfaffianization of the generalized variable-coefficient Kadomtsev-Petviashvili equation, Appl. Math. Comput., 2010, 217, 1300-1305.

    Google Scholar

    [26] Y. Ma and B. Li, Interactions between soliton and rogue wave for a (2+1)-dimensional generalized breaking soliton system: Hidden rogue wave and hidden soliton, Comput. Math. Appl., 2019, 78(3), 827-839. doi: 10.1016/j.camwa.2019.03.002

    CrossRef Google Scholar

    [27] W. Ma, lumps and their interaction solutions of (3+1)-dimensional linear PDEs, J. Geom. Phys., 2018, 133, 10-16. doi: 10.1016/j.geomphys.2018.07.003

    CrossRef Google Scholar

    [28] W. Ma and L. Zhang, Lump solutions with higher-order rational dispersion relations, Pramana J. Phys., 2020. 94, 43. doi: 10.1007/s12043-020-1918-9

    CrossRef Google Scholar

    [29] W. Ma, Global Behavior of a New Rational Nonlinear Higher-Order Difference Equation, Complexity, 2019, 2019, Article ID: 2048941.

    Google Scholar

    [30] W. Ma, Interaction solutions to Hirota-Satsuma-Ito equation in (2+1)-dimensions, Front. Math. China, 2019, 14, 619-629. doi: 10.1007/s11464-019-0771-y

    CrossRef Google Scholar

    [31] W. Ma, M. M. Mousa and M. R. Ali, Application of a new hybrid method for solving singular fractional LanešCEmden-type equations in astrophysics, Mod. Phys. Lett. B, 2020, 34(3), Article ID: 2050049. doi: 10.1142/S0217984920500499

    CrossRef Google Scholar

    [32] T. Muhammad, K. Sunil, R. Hamood et al., Exact traveling wave solutions of Chaffee-Infante equation in (2+1)-dimensions and dimensionless Zakharov equation, Math. Method. Appl. Sci., 2021, 44(2), 1500-1513. doi: 10.1002/mma.6847

    CrossRef Google Scholar

    [33] M. S. Osman, Analytical study of rational and double-soliton rational solutions governed by the KdV-Sawada-Kotera-Ramani equation with variable coefficients, Nonlinear Dyn., 2017, 89, 2283-2289. doi: 10.1007/s11071-017-3586-y

    CrossRef Google Scholar

    [34] M. S. Osman and K. A. Khalid, Optical soliton solutions of perturbing time-fractional nonlinear Schrödinger equations, Optik, 2020, 209, Article ID: 164589. doi: 10.1016/j.ijleo.2020.164589

    CrossRef Google Scholar

    [35] M. S. Osman, H. I. Abdel-Gawad and M. A. El Mahdy, Two-layer-atmospheric blocking in a medium with high nonlinearity and lateral dispersion, Results Phys., 2018, 8, 1054-1060. doi: 10.1016/j.rinp.2018.01.040

    CrossRef Google Scholar

    [36] B. Ren, J. Lin and Z. Lou, Lumps and their interaction solutions of a (2+1)-dimensional generalized potential Kadomtsev-Petviashvili equation, J. Appl. Anal. Comput., 2020, 10(3), 935-945.

    Google Scholar

    [37] B. Ren, W. Ma and J. Yu, Characteristics and interactions of solitary and lump waves of a (2+1)-dimensional coupled nonlinear partial differential equation, Nonlinear Dyn., 2019, 96, 717-727. doi: 10.1007/s11071-019-04816-x

    CrossRef Google Scholar

    [38] N. Raza, M. S. Osman, A. A. Abdel-Haleem et al., Optical solitons of space-time fractional Fokas-Lenells equation with two versatile integration architectures, Adv. Differ. Equ., 2020, 2020, 517. doi: 10.1186/s13662-020-02973-7

    CrossRef Google Scholar

    [39] J. Su and S. Zhang, Nth-order rogue waves for the AB system via the determinants, Appl. Math. Lett., 2021, 112, Article ID: 06714.

    Google Scholar

    [40] M. Sandeep, A. Hassan, K. Sachin et al., A (2+1)-dimensional Kadomtsev-Petviashvili equation with competing dispersion effect: Painlevé analysis, dynamical behavior and invariant solutions, Results Phys., 2021, 23, Article ID: 104043. doi: 10.1016/j.rinp.2021.104043

    CrossRef Google Scholar

    [41] K. Sachin, N. Monika, M. S. Osman et al., Abundant different types of exact soliton solution to the (4+1)-dimensional Fokas and (2+1)-dimensional breaking soliton equations, Commun. Theor. Phys., 2021, 73, Article ID: 105007. doi: 10.1088/1572-9494/ac11ee

    CrossRef Google Scholar

    [42] S. Tian, D. Guo, X. Wang et al., Traveling wave, lump wave, rogue wave, multi-kink solitary wave and interaction solutions in a (3+1)-dimensional Kadomtsev-Petviashvili equation with Bäcklund transformation, J. Appl. Anal. Comput., 2021, 11(1), 45-58.

    Google Scholar

    [43] H. Trikia and A. M. Wazwaz, Soliton solution for an inhomogeneous highly dispersive media with a dual-power nonlinearity law, Int. J. Comput. Math., 2010, 87(5), 1178-1185. doi: 10.1080/00207160903229907

    CrossRef Google Scholar

    [44] P. Wu, Y. Zhang, I. Muhammad et al., Lump, periodic lump and interaction lump stripe solutions to the (2+1)-dimensional B-type Kadomtsev-Petviashvili equation, Mod. Phys. Lett. B, 2018, 32(7), Article ID: 1850106. doi: 10.1142/S0217984918501063

    CrossRef Google Scholar

    [45] H. Wang, S. Tian, T. Zhang et al., The breather wave solutions M-lump solutions and semi-rational solutions to a (2+1)-dimensional generalized Korteweg-de Vries equation, J. Appl. Anal. Comput., 2020, 10(1), 118-130.

    Google Scholar

    [46] L. Wu and A. Vosoughi, Error Performance of Pulse Shape Modulation for UWB Communication with MRC and EGC RAKE Receivers, Wireless Communications and Networking Conference, 2008.

    Google Scholar

    [47] Y. Wang and J. Zhang, Variable-coefficient KP equation and solitonic solution for two-temperature ions in dusty plasma, Phys. Lett. A, 2006, 352(1), 155-162.

    Google Scholar

    [48] J. Wang, H. An and B. Li, Non-traveling lump solutions and mixed lump kink solutions to (2+1)-dimensional variable-coefficient Caudrey-Dodd-Gibbon-Kotera-Sawada equation, Mod. Phys. Lett. B, 2019, 33(22), Article ID: 1950262. doi: 10.1142/S0217984919502622

    CrossRef Google Scholar

    [49] J. Wu, Bilinear Bäcklund transformation for a variable-coefficient Kadomtsev-Petviashvili equation, Chin. Phys. Lett., 2011, 28(6), Article ID: 060207.

    Google Scholar

    [50] A. M. Wazwaz, Construction of solitary wave solutions and rational solutions for the KdV equation by adomian decomposition method, Chaos Soliton. Fract., 2001, 12(12), 2283-2293. doi: 10.1016/S0960-0779(00)00188-0

    CrossRef Google Scholar

    [51] M. Wang, B. Tian, Y. Sun et al., Mixed lump-stripe, bright rogue wave-stripe, dark rogue wave-stripe and dark rogue wave solutions of a generalized Kadomtsev-Petviashvili equation in fluid mechanics, Chinese J. Phys., 2019, 60, 440-449. doi: 10.1016/j.cjph.2019.05.001

    CrossRef Google Scholar

    [52] G. Xu, Painlevé analysis, lump-kink solutions and localized excitation solutions for the (3+1)-dimensional Boiti-Leon-Manna-Pempinelli equation, Appl. Math. Lett., 2019. 91, 81-87.

    Google Scholar

    [53] Y. Xie, Exact solutions of the Wick-type stochastic KadomtsevšCPetviashvili equations, Chaos Soliton. Fract., 2004, 21, 473-480. doi: 10.1016/j.chaos.2003.12.058

    CrossRef Google Scholar

    [54] T. Xu and Y. Chen, Semirational solutions to the coupled Fokas-Lenells equations, Nonlinear Dyn., 2019, 95, 87-99. doi: 10.1007/s11071-018-4552-z

    CrossRef Google Scholar

    [55] G. Xu and A. M. Wazwaz, Characteristics of integrability, bidirectional solitons and localized solutions for a (3+1)-dimensional generalized breaking soliton equation, Nonlinear Dyn., 2019, 96, 1989-2000. doi: 10.1007/s11071-019-04899-6

    CrossRef Google Scholar

    [56] Y. Yin, B. Tian, H. Chai et al., Lumps and rouge waves for a (3+1)-dimensional variable-coefficient Kadomtsev-Petviashvili equation in fluid mechanics, Pramana, 2018, 91, 43. doi: 10.1007/s12043-018-1609-y

    CrossRef Google Scholar

    [57] Z. Yao, C. Zhang, H. Zhu et al., Wronskian and grammian determinant solutions for a variable-coefficient Kadomtsev-Petviashvili equation, Commun. Theor. Phys., 2008, 49(5), 1125-1128. doi: 10.1088/0253-6102/49/5/08

    CrossRef Google Scholar

Figures(9)

Article Metrics

Article views(3004) PDF downloads(494) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint