2020 Volume 10 Issue 4
Article Contents

Oktay Sh. Mukhtarov, Kadriye Aydemir. DISCONTINUOUS STURM-LIOUVILLE PROBLEMS INVOLVING AN ABSTRACT LINEAR OPERATOR[J]. Journal of Applied Analysis & Computation, 2020, 10(4): 1545-1560. doi: 10.11948/20190249
Citation: Oktay Sh. Mukhtarov, Kadriye Aydemir. DISCONTINUOUS STURM-LIOUVILLE PROBLEMS INVOLVING AN ABSTRACT LINEAR OPERATOR[J]. Journal of Applied Analysis & Computation, 2020, 10(4): 1545-1560. doi: 10.11948/20190249

DISCONTINUOUS STURM-LIOUVILLE PROBLEMS INVOLVING AN ABSTRACT LINEAR OPERATOR

  • In this paper we introduce to consideration a new type boundary value problems consisting of an "Sturm-Liouville" equation on two disjoint intervals as $ -p(x)y^{\prime \prime }+ q(x)y+\mathfrak{B}y|_{x} = \mu y , x\in [a, c)\cup(c, b] $ together with two end-point conditions whose coefficients depend linearly on the eigenvalue parameter, and two supplementary so-called transmission conditions, involving linearly left-hand and right-hand values of the solution and its derivatives at point of interaction $x=c, $ where $\mathfrak{B}:L_{2}(a, c)\oplus L_{2}(c, b)\rightarrow L_{2}(a, c)\oplus L_{2}(c, b)$ is an abstract linear operator, non-selfadjoint in general. For self-adjoint realization of the pure differential part of the main problem we define "alternative" inner products in Sobolev spaces, "incorporating" with the boundary-transmission conditions. Then by suggesting an own approaches we establish such properties as topological isomorphism and coercive solvability of the corresponding nonhomogeneous problem and prove compactness of the resolvent operator in these Sobolev spaces. Finally, we prove that the spectrum of the considered eigenvalue problem is discrete and derive asymptotic formulas for the eigenvalues. Note that the obtained results are new even in the case when the equation is not involved an abstract linear operator $\mathfrak{B}.$
    MSC: 34B24, 34L05, 34L10, 34L20
  • 加载中
  • [1] B. P. Allahverdiev, E. Bairamov and E. Uğurlu, Eigenparameter dependent Sturm-Liouville problems in boundary conditions with transmission conditions, J. Funct. Anal., 2013, 401(1), 388-396.

    Google Scholar

    [2] B. P. Allahverdiev, H. Tuna, Titchmarsh-Weyl theory for dirac systems with transmission conditions, Mediterr. J. Math., 2018. DOI: 10.1007/s00009-018-1197-6.

    CrossRef Google Scholar

    [3] W. O. Amrein and V. Georgescu, Strong asymptotic completeness of wave operators for highly singular potentials, Helv. Phys. Acta., 1974, 47, 517-533.

    Google Scholar

    [4] N. Aronszajn, On a problem of Weyl in the theory of singular Sturm-Liouville equations, Amer. J. Math., 1957, 79(3), 597-610.

    Google Scholar

    [5] P. A. Binding, P. J. Browne And B. A. Watson, Sturm-Liouville problems with boundary conditions rationallay dependent on the eigenparameter Ⅱ, J. Comput. Appl. Math., 2002, 148, 147-169. doi: 10.1016/S0377-0427(02)00579-4

    CrossRef Google Scholar

    [6] G. D. Birkhoff, Boundary-value and expansion problems of ordinary differential equations, Trans. Amer. Math. Soc., 1908, 9(4), 373-395. doi: 10.1090/S0002-9947-1908-1500818-6

    CrossRef Google Scholar

    [7] S. A. Buterin, On half inverse problem for differential pencils with the spectral parameter in boundary conditions, Tamkang J.Math., 2011, 42(3), 355-364. doi: 10.5556/j.tkjm.42.2011.912

    CrossRef Google Scholar

    [8] F. Gesztesy and B. Simon, Inverse spectral analysis with partial information on the potential.Ⅱ:The case of discrete spectrum, Trans.Amer.Math.Soc., 2000, 352(6), 2765-2787. doi: 10.1090/S0002-9947-99-02544-1

    CrossRef Google Scholar

    [9] O. R. Hryniv and Y. V. Mykytyuk, Half-inverse spectral problems for Sturm-Liouville operators with singular potentials, Inverse Problems, 2004, 20(5), 1423-1444. doi: 10.1088/0266-5611/20/5/006

    CrossRef Google Scholar

    [10] M. Kandemir, O. Sh. Mukhtarov and Y.Y. Yakubov, Irregular boundary value problems with discontinuous coefficients and the eigenvalue parameter, Mediterr, J. Math., 2009, 6(3), 317-338. doi: 10.1007/s00009-009-0011-x

    CrossRef Google Scholar

    [11] M. Kandemir and O. Sh. Mukhtarov, Nonlocal Sturm-Liouville problems with integral terms in the boundary conditions, Electronic Journal of Differential Equations, 2017, 2017(11), 1-12.

    Google Scholar

    [12] T. Kato, Perturbation of continuous spectra by trace class operators, Proc. Japan Acad., 1957, 33, 260-264. doi: 10.3792/pja/1195525063

    CrossRef Google Scholar

    [13] T. Kato, Perturbation Theory for Linear Operators, Springer-Verlag, Berlin, New York, 1984.

    Google Scholar

    [14] M. V. Keldysh, On the characteristic values and characteristic functions of certain classes of non-selfadjoint equations, Dokl. AN SSSR, 1951, 77, 11-14.

    Google Scholar

    [15] A. V. Likov and Y. A. Mikhailov, The theory of Heat and Mass Transfer, Qosenergaizdat, Russian, 1963.

    Google Scholar

    [16] A. S. Markus, Introduction to the Spectral Theory of Polynomial Operator Pencils, Shtiintsa, Kishinev, 1986.

    Google Scholar

    [17] A. S. Markus and V. I. Matsayev, Comparison theorems for spectra of linear Operators and spectral asymptotics, Tr. Mosk. Mat. Obshch., 1982, 45, 133-181.

    Google Scholar

    [18] M. Marletta, A. Shkalikov and C. Tretter, Pencils of differential operators containing the eigenvalue parameter in the boundary conditions, Proc. R. Soc. Edinb., Sect. A, Math., 2003, 133(4), 893-917. doi: 10.1017/S0308210500002730

    CrossRef Google Scholar

    [19] O. Martinyuk and V. Pivovarchik, On the Hochstadt-Lieberman theorem, Inverse Problems, 2010, 26(3), 035011.

    Google Scholar

    [20] S. S. Mirzoyev, A. R. Aliev and L. A. Rustamova, Solvability conditions for boundary-value problems for elliptic operator-differential equations with discontinuous coefficient, Math. Notes, 2012, 92(5), 722-726

    Google Scholar

    [21] O. S. Mukhtarov and K. Aydemir, Minimization principle and generalized fourier series for discontinuous Sturm-liouville systems in direct sum spaces, Journal of Applied Analysis and Computation, 2018, 8(5), 1511-1523.

    Google Scholar

    [22] O. S. Mukhtarov, H. Olǧar and K. Aydemir, Resolvent Operator and Spectrum of New Type Boundary Value Problems, Filomat, 2015, 29(7), 1671-1680. doi: 10.2298/FIL1507671M

    CrossRef Google Scholar

    [23] H. Olǧar and F. S. Muhtarov, The basis property of the system of weak eigenfunctions of a discontinuous Sturm-liouville problem, Mediterr. J. Math., 2017. DOI:10.1007/s00009-017-0915-9.

    CrossRef Google Scholar

    [24] H. Olǧar, O. Sh. Mukhtarov, and K. Aydemir, Some properties of eigenvalues and generalized eigenvectors of one boundary value problem, Filomat 2018, 32(3), 911-920.

    Google Scholar

    [25] E. Penahlı and A. Ercan, Stability problem of singular Sturm-Liouville equation, TWMS J. Pure Appl. Math., 2017, 8(2), 148-159.

    Google Scholar

    [26] M. L. Rasulov, Methods of Contour Integration, North-Holland Publishing Company, Amsterdam, 1967.

    Google Scholar

    [27] M. Rosenblum, Perturbation of the continuous spectrum and unitary equivalence, Pacific J. Math., 1957, 7(1), 997-1010. doi: 10.2140/pjm.1957.7.997

    CrossRef Google Scholar

    [28] L. Sakhnovich, Half inverse problems on the finite interval, Inverse Problems, 2001, 17(3), 527-532. doi: 10.1088/0266-5611/17/3/311

    CrossRef Google Scholar

    [29] E. Şen, O. S. Mukhtarov, Spectral properties of discontinuous Sturm-Liouville problems with a finite number of transmission conditions, Mediterranean Journal of Mathematics, 2016, 13(1), 153-170. doi: 10.1007/s00009-014-0487-x

    CrossRef Google Scholar

    [30] A. A. Shkalikov, Boundary problems for ordinary differential equations with parameter in the boundary conditions , Tr. Semin. Im. I.G. Petrovskogo 1983, 9, 190-229 (Russian), translation in J. Sov. Math., 1986, 33(6), 1311-1342. doi: 10.1007/BF01084754

    CrossRef Google Scholar

    [31] Y. D. Tamarkin, On Some General Problems of the Theory of Ordinary Linear Differential Equations and on the Expansion of Arbitrary Functions in Series, Petrograd, Russian, 1917.

    Google Scholar

    [32] A. N. Tikhonov and A. A. Samarskii, Equations of Mathematical Physics, Pergamon, Oxford and New York, 1963.

    Google Scholar

    [33] I. Titeux and Y. Yakubov, Completeness of root functions for thermal conduction in a strip with piecewise continuous coefficients, Math. Models Methods Appl. Sc., 1997, 7(7), 1035-1050. doi: 10.1142/S0218202597000529

    CrossRef Google Scholar

    [34] H. Triebel, Interpolation Theory, Function Spaces, Differential Operators, North-Holland, Amsterdam, 1978.

    Google Scholar

    [35] I. Trooshin and M. Yamamoto, Hochstadt-Lieberman type theorem foranon-symmetric system of first-order ordinary differential operators, Recent Development in Theories Numerics, 2003, 202-211.

    Google Scholar

    [36] E. Uğurlu and E. Bairamov, Krein's theorem for the dissipative operators with finite impulsive effects , Numer. Func. Anal. Optim., 2015, 36(2), 256-270. doi: 10.1080/01630563.2014.970642

    CrossRef Google Scholar

    [37] N. N. Voitovich, B. Z. Katsenelbaum and A. N. Sivov, Generalized Method of Eigen-vibration in the Theory of Diffraction, Nakua, Mockow, 1997 (Russian).

    Google Scholar

    [38] A. Wang, J. Sun and A. Zettl, The classification of self-adjoint boundary conditions: separated, coupled, and mixed, J. Funct. Anal., 2008, 255(6), 1554-1573. doi: 10.1016/j.jfa.2008.05.003

    CrossRef Google Scholar

    [39] H. Weyl, Das Asymptotische Verteilungsgezetz der Eigenverte linearer Partiler Differentialgleihun-gen, Math. Anal., 1912, 71, 441-479. doi: 10.1007/BF01456804

    CrossRef Google Scholar

    [40] S. Y. Yakubov, Completeness of Root Functions of Regular Differential Operators, Longman Scientific and Technical, Newyork, 1994.

    Google Scholar

    [41] C. F. Yang and A. Zettl, Half inverse problems for quadratic pencils of Sturm-Liouville operators, Taiwanese J. Math., 2012, 16(5), 1829-1846. doi: 10.11650/twjm/1500406800

    CrossRef Google Scholar

    [42] M. Yücel, O. S. Mukhtarov, A New Treatment of the Decomposition Method for Nonclassical Boundary Value Problems, Journal of Advanced Physics, 2018, 7(2), 161-166. doi: 10.1166/jap.2018.1412

    CrossRef Google Scholar

Article Metrics

Article views(1927) PDF downloads(405) Cited by(0)

Access History

Other Articles By Authors

Catalog

    /

    DownLoad:  Full-Size Img  PowerPoint