skip to main content
article

A complete problem for statistical zero knowledge

Published: 01 March 2003 Publication History

Abstract

We present the first complete problem for SZK, the class of promise problems possessing statistical zero-knowledge proofs (against an honest verifier). The problem, called Statistical Difference, is to decide whether two efficiently samplable distributions are either statistically close or far apart. This gives a new characterization of SZK that makes no reference to interaction or zero knowledge.We propose the use of complete problems to unify and extend the study of statistical zero knowledge. To this end, we examine several consequences of our Completeness Theorem and its proof, such as:---A way to make every (honest-verifier) statistical zero-knowledge proof very communication efficient, with the prover sending only one bit to the verifier (to achieve soundness error 1/2).---Simpler proofs of many of the previously known results about statistical zero knowledge, such as the Fortnow and Aiello--Hεstad upper bounds on the complexity of SZK and Okamoto's result that SZK is closed under complement.---Strong closure properties of SZK that amount to constructing statistical zero-knowledge proofs for complex assertions built out of simpler assertions already shown to be in SZK.---New results about the various measures of "knowledge complexity," including a collapse in the hierarchy corresponding to knowledge complexity in the "hint" sense.---Algorithms for manipulating the statistical difference between efficiently samplable distributions, including transformations that "polarize" and "reverse" the statistical relationship between a pair of distributions.

References

[1]
Aiello, W., Bellare, M., and Venkatesan, R. 1995. Knowledge on the average---perfect, statistical and logarithmic. In Proceedings of the 27th Annual ACM Symposium on the Theory of Computing (Las Vegas, Nev., May 29--June 1). ACM, New York, pp. 469--478.]]
[2]
Aiello, W., and Hastad, J. 1991. Statistical zero-knowledge languages can be recognized in two rounds. J. Comput. Syst. Sci. 42, 3 (June), 327--345.]]
[3]
Ajtai, M., and Ben-Or, M. 1984. A theorem on probabilistic constant depth computations. In Proceedings of the 16th Annual ACM Symposium on Theory of Computing (Washington, D.C.). ACM, New York, pp. 471--474.]]
[4]
Arora, S., Lund, C., Motwani, R., Sudan, M., and Szegedy, M. 1998. Proof verification and the hardness of approximation problems. J. ACM 45, 3 (May), 501--555.]]
[5]
Arora, S., and Safra, S. 1998. Probabilistic checking of proofs: A new characterization of NP. J. ACM 45, 1 (Jan.), 70--122.]]
[6]
Babai, L., and Moran, S. 1988. Arthur--Merlin games: A randomized proof system and a hierarchy of complexity classes. J. Comput. Syst. Sci. 36, 254--276.]]
[7]
Bellare, M. 1997. A note on negligible functions. Tech. Rep. CS97-529, Dept. Computer Science and Engineering, Univ. California at San Diego, San Diego, Calif., March. Also available from the Theory of Cryptography Library (http://theory.lcs.mit.edu/∼tcryptol).]]
[8]
Bellare, M., Micali, S., and Ostrovsky, R. 1990. The (true) complexity of statistical zero knowledge. In Proceedings of the 22nd Annual ACM Symposium on Theory of Computing (Baltimore, Md. May 14--16) ACM, New York, pp. 494--502.]]
[9]
Bellare, M., and Petrank, E. 1992. Making zero-knowledge provers efficient. In Proceedings of the 24th Annual ACM Symposium on the Theory of Computing (Victoria, B.C. Canada, May 4--6). ACM, New York, pp. 711--722.]]
[10]
Boppana, R. B., Hastad, J., and Zachos, S. 1987. Does co-NP have short interactive proofs? Inf. Proc. Lett. 25, 127--132.]]
[11]
Cook, S. A. 1971. The complexity of theorem-proving procedures. In Conference Record of the 3rd Annual ACM Symposium on Theory of Computing (Shaker Heights, Ohio, 3--5). ACM, New York, pp. 151--158.]]
[12]
Cover, T. M., and Thomas, J. A. 1991. Elements of Information Theory, 2nd ed. Wiley Series in Telecommunications. Wiley, New York.]]
[13]
Damgård, I., and Cramer, R. 1996. On monotone function closure of perfect and statistical zero-knowledge. Theory of Cryptography Library: Record 96-03. http://theory.lcs.mit.edu/∼tcryptol.]]
[14]
Damgård, I., Goldreich, O., Okamoto, T., and Wigderson, A. 1995. Honest verifier vs. dishonest verifier in public coin zero-knowledge proofs. In Proceedings of Crypto '95. Lecture Notes in Computer Science, vol. 403. Springer-Verlag, New York.]]
[15]
Damgård, I. B. 1993. Interactive hashing can simplify zero-knowledge protocol design without computational assumptions (extended abstract). In Advances in Cryptology---CRYPTO '93, Douglas R. Stinson, Ed. Lecture notes in Computer Science, vol. 773. Springer-Verlag, New York, pp. 100--109.]]
[16]
De Santis, A., Di Crescenzo, G., Persiano, G., and Yung, M. 1994. On monotone formula closure of SZK. In Proceedings of the 35th Annual Symposium on Foundations of Computer Science (Santa Fe, N.M., Nov. 20--22). IEEE Computer Society Press, Los Alamitos, Calif., pp. 454--465.]]
[17]
De Santis, A., Di Crescenzo, G., Persiano, G., and Yung, M. 1998. Image Density is complete for non-interactive-SZK. In Automata, Languages and Programming, 25th International Colloquium (Aalborg, Denmark, July 13--17). Lecture Notes in Computer Science, Springer-Verlag, New York, pp. 784--795. (See also preliminary draft of full version, May 1999.)]]
[18]
Di Crescenzo, G., Okamoto, T., and Yung, M. 1997. Keeping the SZK-verifier honest unconditionally. In Advances in Cryptology---CRYPTO '97, Burton S. Kaliski Jr., Ed. Lecture Notes in Computer Science, vol. 1294. Springer-Verlag, New York, 31--45.]]
[19]
Di Crescenzo, G., Sakurai, K., and Yung, M. 2000. On zero-knowledge proofs: "From membership to decision". In Proceedings of the 32nd Annual ACM Symposium on Theory of Computing (Portland, Ore., May). ACM, New York, pp. 255--264.]]
[20]
Even, S., Selman, A. L., and Yacobi, Y. 1984. The complexity of promise problems with applications to public-key cryptography. Inf. Cont. 61, 2 (May), 159--173.]]
[21]
Fortnow, L. 1989. The complexity of perfect zero-knowledge. In Advances in Computing Research, vol. 5, Silvio Micali, Ed. JAC Press, Inc., pp. 327--343.]]
[22]
Goldreich, O. 1990. A note on computational indistinguishability. Inf. Proc. Lett. 34, 6 (May), 277--281.]]
[23]
Goldreich, O. 2001. Foundations of Cryptography: Basic Tools. Cambridge University Press.]]
[24]
Goldreich, O., and Goldwasser, S. 2000. On the limits of nonapproximability of lattice problems. J. Comp. Syst. Sci. 60, 3, 540--563.]]
[25]
Goldreich, O., and Krawczyk, H. 1996. On the composition of zero-knowledge proof systems. SIAM J. Comput. 25, 1 (Feb.), 169--192.]]
[26]
Goldreich, O., and Kushilevitz, E. 1993. A perfect zero-knowledge proof system for a problem equivalent to the discrete logarithm. J. Cryptology 6, 97--116.]]
[27]
Goldreich, O., Micali, S., and Wigderson, A. 1991. Proofs that yield nothing but their validity or all languages in NP have zero-knowledge proof systems. J. ACM 38, 1, 691--729.]]
[28]
Goldreich, O., Nisan, N., and Wigderson, A. 1995. On Yao's XOR lemma. Tech. Rep. TR95--050. Electronic Colloquium on Computational Complexity. Mar. http://www.eccc.uni-trier.de/eccc.]]
[29]
Goldreich, O., and Oren, Y. 1994. Definitions and properties of zero-knowledge proof systems. J. Cryptology 7, 1 (Winter), 1--32.]]
[30]
Goldreich, O., Ostrovsky, R., and Petrank, E. 1998. Computational complexity and knowledge complexity. SIAM J. Comput. 27, 4 (Aug.), 1116--1141.]]
[31]
Goldreich, O., and Petrank, E. 1999. Quantifying knowledge complexity. Comput. Complex. 8, 1, 50--98.]]
[32]
Goldreich, O., Sahai, A., and Vadhan, S. 1998. Honest verifier statistical zero-knowledge equals general statistical zero-knowledge. In Proceedings of the 30th Annual ACM Symposium on Theory of Computing (Dallas, Tex., May 23--26). ACM, New York, pp. 399--408.]]
[33]
Goldreich, O., Sahai, A., and Vadhan, S. 1999. Can statistical zero-knowledge be made non-interactive?, or On the relationship of SZK and NISZK. In Advances in Cryptology---CRYPTO '99 (Aug. 15--19. Lecture Notes in Computer Science, Springer-Verlag, New York.]]
[34]
Goldreich, O., and Vadhan, S. 1999. Comparing entropies in statistical zero-knowledge with applications to the structure of SZK. In Proceedings of the 14th Annual IEEE Conference on Computational Complexity (Atlanta, Ga., May). IEEE Computer Society Press, Los Alamitos, Calif., pp. 54--73.]]
[35]
Goldreich, O., Vadhan, S., and Wigderson, A. 2001. On interactive proofs with a laconic prover. In Automata, Languages and Programming, 28th International Colloquium. (Crete, Greece, July 7--11). Lecture Notes in Computer Science, vol. 2076. Springer-Verlag, New York, pp. 334--345.]]
[36]
Goldwasser, S., and Micali, S. 1984. Probabilistic encryption. J. Comput. Syst. Sci. 28, 2 (Apr.), 270--299.]]
[37]
Goldwasser, S., Micali, S., and Rackoff, C. 1989. The knowledge complexity of interactive proof systems. SIAM J. Comput. 18, 1 (Feb.), 186--208.]]
[38]
Goldwasser, S., and Sipser, M. 1989. Private coins versus public coins in interactive proof systems. In Advances in Computing Research, vol. 5. Silvio Micali, Ed. JAC Press, Inc., pp. 73--90.]]
[39]
Gutfreund, D., and Ben-Or, M. 2000. Increasing the power of the dealer in non-interactive zero-knowledge proof systems. In Advances in Cryptology---ASIACRYPT '00 (Kyoto, Japan). Springer-Verlag, Berlin, Germany. To appear.]]
[40]
Håstad, J., Impagliazzo, R., Levin, L. A., and Luby, M. 1999. A pseudorandom generator from any one-way function. SIAM J. Comput. 28, 4, 1364--1396 (electronic).]]
[41]
Hofri, M. 1995. Analysis of Algorithms: Computational Methods & Mathematical Tools. Oxford University Press.]]
[42]
Kannan, S. 1989. Program Checkers for Algebraic Problems. Ph.D. dissertation. Univ. of California, Berkeley, Berkeley, Calif.]]
[43]
Karp, R. M. 1972. Reducibility among combinatorial problems. In Complexity of Computer Computations, J. W. Thatcher and R. E. Miller, Eds. Plenum Press, New York, pp. 85--103.]]
[44]
Ladner, R. E., Lynch, N. A., and Selman, A. L. 1975. A comparison of polynomial time reducibilities. Theoret. Comput. Sci. 1, 2 (Dec.), 103--123.]]
[45]
Levin, L. A. 1973. Universal'nyĭe perebornyĭe zadachi (Universal search problems : in Russian). Problemy Peredachi Informatsii 9, 3, 265--266.]]
[46]
Lund, C., Fortnow, L., Karloff, H., and Nisan, N. 1992. Algebraic methods for interactive proof systems. J. ACM 39, 4 (Oct.), 859--868.]]
[47]
Okamoto, T. 2000. On relationships between statistical zero-knowledge proofs. J. Comput. Syst. Sci. 60, 1 (Feb.), 47--108.]]
[48]
Ostrovsky, R. 1991. One-way functions, hard on average problems, and statistical zero-knowledge proofs. In Proceedings of the 6th Annual Structure in Complexity Theory Conference (Chicago, Ill. June 30--July 3). IEEE Computer Society Press, Los Alamitos, Calif., pp. 133--138.]]
[49]
Ostrovsky, R., Venkatesan, R., and Yung, M. 1993. Interactive hashing simplifies zero-knowledge protocol design. In Proceedings of Eurocrypt '93. Lecture Notes in Computer Science. Springer-Verlag, New York.]]
[50]
Ostrovsky, R., and Wigderson, A. 1993. One-way functions are essential for non-trivial zero-knowledge. In Proceedings of the 2nd Israel Symposium on Theory of Computing and Systems.]]
[51]
Papadimitriou, C. H. 1994. Computational Complexity. Addison--Wesley, Reading, Mass.]]
[52]
Petrank, E., and Tardos, G. 1996. On the knowledge complexity of NP. In Proceedings of the 37th Annual Symposium on Foundations of Computer Science (Burlington, Vt. Oct. 14--16). IEEE Computer Society Press, Los Alamitos, Calif., pp. 494--503.]]
[53]
Sahai, A. 2000. Frontiers in Zero Knowledge. Ph.D. dissertation. Massachusetts Institute of Technology, Cambridge, Mass.]]
[54]
Sahai, A., and Vadhan, S. 1999. Manipulating statistical difference. In Randomization Methods in Algorithm Design (DIMACS Workshop, December 1997), Panos Pardalos, Sanguthevar Rajasekaran, and José Rolim, Eds. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 43. American Mathematical Society, Providence, R.I., pp. 251--270.]]
[55]
Sahai, A., and Vadhan, S. P. 1997. A complete promise problem for statistical zero-knowledge. In Proceedings of the 38th Annual Symposium on Foundations of Computer Science (Miami Beach, Fla. Oct. 20--22). IEEE Computer Society Press, Los Alamitos, Calif., pp. 448--457.]]
[56]
Shamir, A. 1992. IP = PSPACE. J. ACM 39, 4 (Oct.), 869--877.]]
[57]
Vadhan, S. P. 1999. A Study of Statistical Zero-Knowledge Proofs. Ph.D. dissertation. Massachusetts Institute of Technology. Cambridge, Mass.]]
[58]
Vadhan, S. P. 2000. On transformations of interactive proofs that preserve the prover's complexity. In Proceedings of the 32nd Annual ACM Symposium on Theory of Computing (Portland, Ore., May). ACM, New York, pp. 200--207.]]
[59]
Yao, A. C. 1982. Theory and applications of trapdoor functions (extended abstract). In Proceedings of the 23rd Annual Symposium on Foundations of Computer Science (Chicago, Ill., Nov. 3--5). IEEE Computer Society Press, Los Alamitos, Calif., pp. 80--91.]]

Cited By

View all
  • (2024)Двусторонние оценки суммы вероятностей ошибок в задаче о различении конечного числа гипотез о неоднородной выборкеTwo-sided estimates for the sum of probabilities of errors in the multiple hypotheses testing problem with finite number of hypotheses about a nonhomogeneous sampleТеория вероятностей и ее примененияTeoriya Veroyatnostei i ee Primeneniya10.4213/tvp558669:2(405-416)Online publication date: 25-Apr-2024
  • (2024)Two-sided Estimates for the Sum of Probabilities of Errors in the Multiple Hypothesis Testing Problem with Finite Number of Hypotheses on a Nonhomogeneous SampleTheory of Probability & Its Applications10.1137/S0040585X97T99194569:2(322-330)Online publication date: 14-Aug-2024
  • (2024)How to Construct Quantum FHE, GenericallyAdvances in Cryptology – CRYPTO 202410.1007/978-3-031-68382-4_8(246-279)Online publication date: 18-Aug-2024
  • Show More Cited By

Recommendations

Comments

Information & Contributors

Information

Published In

cover image Journal of the ACM
Journal of the ACM  Volume 50, Issue 2
March 2003
169 pages
ISSN:0004-5411
EISSN:1557-735X
DOI:10.1145/636865
Issue’s Table of Contents
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 01 March 2003
Published in JACM Volume 50, Issue 2

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. Knowledge complexity
  2. proof systems
  3. statistical difference
  4. zero knowledge

Qualifiers

  • Article

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)48
  • Downloads (Last 6 weeks)7
Reflects downloads up to 23 Oct 2024

Other Metrics

Citations

Cited By

View all
  • (2024)Двусторонние оценки суммы вероятностей ошибок в задаче о различении конечного числа гипотез о неоднородной выборкеTwo-sided estimates for the sum of probabilities of errors in the multiple hypotheses testing problem with finite number of hypotheses about a nonhomogeneous sampleТеория вероятностей и ее примененияTeoriya Veroyatnostei i ee Primeneniya10.4213/tvp558669:2(405-416)Online publication date: 25-Apr-2024
  • (2024)Two-sided Estimates for the Sum of Probabilities of Errors in the Multiple Hypothesis Testing Problem with Finite Number of Hypotheses on a Nonhomogeneous SampleTheory of Probability & Its Applications10.1137/S0040585X97T99194569:2(322-330)Online publication date: 14-Aug-2024
  • (2024)How to Construct Quantum FHE, GenericallyAdvances in Cryptology – CRYPTO 202410.1007/978-3-031-68382-4_8(246-279)Online publication date: 18-Aug-2024
  • (2023)On approximating total variation distanceProceedings of the Thirty-Second International Joint Conference on Artificial Intelligence10.24963/ijcai.2023/387(3479-3487)Online publication date: 19-Aug-2023
  • (2023)Doubley-Efficient Interactive Proofs for Distribution Properties2023 IEEE 64th Annual Symposium on Foundations of Computer Science (FOCS)10.1109/FOCS57990.2023.00049(743-751)Online publication date: 6-Nov-2023
  • (2023)Cryptographic hardness under projections for time-bounded Kolmogorov complexityTheoretical Computer Science10.1016/j.tcs.2022.10.040940:PB(206-224)Online publication date: 9-Jan-2023
  • (2023)The final nail in the coffin of statistically-secure obfuscatorInformation Processing Letters10.1016/j.ipl.2023.106366182(106366)Online publication date: Aug-2023
  • (2023)Searching for ELFs in the Cryptographic ForestTheory of Cryptography10.1007/978-3-031-48621-0_8(207-236)Online publication date: 29-Nov-2023
  • (2022)An Efficient Zero-Knowledge Dual Membership Proof Supporting Pos-and-Neg Membership DecisionMathematics10.3390/math1017321710:17(3217)Online publication date: 5-Sep-2022
  • (2022)Pseudodeterminism: promises and lowerboundsProceedings of the 54th Annual ACM SIGACT Symposium on Theory of Computing10.1145/3519935.3520043(1552-1565)Online publication date: 9-Jun-2022
  • Show More Cited By

View Options

Get Access

Login options

Full Access

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media