skip to main content
research-article

Search via Parallel Lévy Walks on Z2

Published: 23 July 2021 Publication History

Abstract

Motivated by the Lévy foraging hypothesis -- the premise that various animal species have adapted to follow Lévy walks to optimize their search efficiency -- we study the parallel hitting time of Lévy walks on the infinite two-dimensional grid. We consider k independent discrete-time Lévy walks, with the same exponent α ∈(1,∞), that start from the same node, and analyze the number of steps until the first walk visits a given target at distance ℓ. % We show that for any choice of k and ℓ from a large range, there is a unique optimal exponent α_k,∈ (2,3), for which the hitting time is Õ(ℓ2/k) w.h.p., while modifying the exponent by any constant term ε>0 increases the hitting time by a factor polynomial in ℓ, or the walks fail to hit the target almost surely. % Based on that, we propose a surprisingly simple and effective parallel search strategy, for the setting where k and ℓ are unknown: The exponent of each Lévy walk is just chosen independently and uniformly at random from the interval (2,3). This strategy achieves optimal search time (modulo polylogarithmic factors) among all possible algorithms (even centralized ones that know k). % Our results should be contrasted with a line of previous work showing that the exponent α = 2 is optimal for various search problems. In our setting of k parallel walks, we show that the optimal exponent depends on k and ℓ, and that randomizing the choice of the exponents works simultaneously for all k and ℓ.

Supplementary Material

MP4 File (podc_2021.mp4)
Presentation video - short version - of our work "Search via Parallel Lévy Walks on Z^2". A brief description of the related work is given, followed by the summary of our main results, and an outline of the main proofs.

References

[1]
Noga Alon, Chen Avin, Michal Koucký, Gady Kozma, Zvi Lotker, and Mark R. Tuttle. 2011. Many random walks are gaster than one. Combinatorics, Probability and Computing 20, 4 (2011), 481--502. https://doi.org/10.1017/S0963548311000125
[2]
Lucas Boczkowski, Brieuc Guinard, Amos Korman, Zvi Lotker, and Marc Renault. 2018. Random walks with multiple step lengths. In LATIN 2018: Theoretical Informatics. 174--186. https://doi.org/10.1007/978--3--319--77404--6_14[3] Denis Boyer, Gabriel Ramos-Fernández, Octavio Miramontes, José L Mateos, Germinal Cocho, Hernán Larralde, Humberto Ramos, and Fernando Rojas. 2006. Scale-free foraging by primates emerges from their interaction with a complex environment. Proceedings of the Royal Society B: Biological Sciences 273, 1595 (2006), 1743--1750. https://doi.org/10.1098/rspb.2005.3462
[3]
S. V. Buldyrev, S. Havlin, A. Ya. Kazakov, M. G. E. da Luz, E. P. Raposo, H. E. Stanley, and G. M. Viswanathan. 2001. Average time spent by Lévy flights and walks on an interval with absorbing boundaries. Phys. Rev. E 64 (2001), 041108. Issue 4. https://doi.org/10.1103/PhysRevE.64.041108
[4]
S. V. Buldyrev, E. P. Raposo, F. Bartumeus, S. Havlin, F. R. Rusch, M. G. E. da Luz, and G. M. Viswanathan. 2021. Comment on "Inverse Square Lévy Walks are not Optimal Search Strategies for ?? ? 2". Phys. Rev. Lett. 126 (Jan 2021), 048901. Issue 4. https://doi.org/10.1103/PhysRevLett.126.048901
[5]
Fan Chung and Linyuan Lu. 2006. Concentration Inequalities and Martingale Inequalities: A Survey. Internet Mathematics 3 (2006). https://doi.org/10.1080/ 15427951.2006.10129115
[6]
Andrea E. F. Clementi, Francesco d'Amore, George Giakkoupis, and Emanuele Natale. 2021. Search via parallel Lévy walks on Z 2 . CoRR abs/2004.01562 (2021). arXiv:2004.01562 https://arxiv.org/abs/2004.01562
[7]
Lihi Cohen, Yuval Emek, Oren Louidor, and Jara Uitto. 2017. Exploring an Infinite Space with Finite Memory Scouts. In Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA. 207--224. https: //doi.org/10.1137/1.9781611974782.14
[8]
Devdatt P. Dubhashi and Alessandro Panconesi. 2009. Concentration of measure for the analysis of randomized algorithms. Cambridge University Press. https: //doi.org/10.1017/CBO9780511581274
[9]
Andrew M. Edwards, Richard A. Phillips, Nicholas W. Watkins, Mervyn P. Freeman, Eugene J. Murphy, Vsevolod Afanasyev, Sergey V. Buldyrev, M. G. E. da Luz, E. P. Raposo, H. Eugene Stanley, and Gandhimohan M. Viswanathan. 2007. Revisiting Lévy flight search patterns of wandering albatrosses, bumblebees and deer. Nature 449, 7165 (2007), 1044--1048. https://doi.org/10.1038/nature06199
[10]
Klim Efremenko and Omer Reingold. 2009. How Well Do Random Walks Parallelize?. In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques, 12th International Workshop, APPROX. 476--489. https://doi.org/10.1007/978--3--642-03685--9_36
[11]
Robert Elsässer and Thomas Sauerwald. 2011. Tight bounds for the cover time of multiple random walks. Theoretical Computer Science 412, 24 (2011), 2623 -- 2641. https://doi.org/10.1016/j.tcs.2010.08.010
[12]
Yuval Emek, Tobias Langner, David Stolz, Jara Uitto, and Roger Wattenhofer. 2015. How many ants does it take to find the food? Theoretical Computer Science 608 (2015), 255 -- 267. https://doi.org/10.1016/j.tcs.2015.05.054
[13]
Yuval Emek, Tobias Langner, Jara Uitto, and Roger Wattenhofer. 2014. Solving the ANTS Problem with Asynchronous Finite State Machines. In Automata, Languages, and Programming - 41st International Colloquium, ICALP 2014. 471-- 482. https://doi.org/10.1007/978--3--662--43951--7_40
[14]
Ofer Feinerman and Amos Korman. 2017. The ANTS problem. Distributed Comput. 30, 3 (2017), 149--168. https://doi.org/10.1007/s00446-016-0285--8
[15]
William Feller. 1968. An Introduction to Probability Theory and Its Applications. Vol. 1. Wiley.
[16]
Stefano Focardi, Paolo Montanaro, and Elena Pecchioli. 2009. Adaptive Lévy walks in foraging fallow deer. PLoS One 4, 8 (2009), e6587. https://doi.org/10. 1371/journal.pone.0006587
[17]
Pierre Fraigniaud, Amos Korman, and Yoav Rodeh. 2016. Parallel exhaustive search without coordination. In Proceedings of the Forty-eighth Annual ACM Symposium on Theory of Computing, STOC. 312--323. https://doi.org/10.1145/ 2897518.2897541
[18]
Brieuc Guinard and Amos Korman. 2020. The Search Efficiency of Intermittent Lévy walks Optimally Scales with Target Size. CoRR abs/2003.13041 (2020). arXiv:2003.13041 https://arxiv.org/abs/2003.13041
[19]
Brieuc Guinard and Amos Korman. 2020. Tight Bounds for the Cover Times of Random Walks with Heterogeneous Step Lengths. In 37th International Symposium on Theoretical Aspects of Computer Science, STACS 2020. 28:1--28:14. https://doi.org/10.4230/LIPIcs.STACS.2020.28
[20]
Nicolas E Humphries, Nuno Queiroz, Jennifer RM Dyer, Nicolas G Pade, Michael K Musyl, Kurt M Schaefer, Daniel W Fuller, Juerg M Brunnschweiler, Thomas K Doyle, Jonathan DR Houghton, et al. 2010. Environmental context explains Lévy and Brownian movement patterns of marine predators. Nature 465, 7301 (2010), 1066--1069. https://doi.org/10.1038/nature09116
[21]
Nicolas E. Humphries, Henri Weimerskirch, Nuno Queiroz, Emily J. Southall, and David W. Sims. 2012. Foraging success of biological Lévy flights recorded in situ. Proceedings of the National Academy of Sciences 109, 19 (2012), 7169--7174. https://doi.org/10.1073/pnas.1121201109
[22]
Andrej Ivaskovic, Adrian Kosowski, Dominik Pajak, and Thomas Sauerwald. 2017. Multiple Random Walks on Paths and Grids. In 34th Symposium on Theoretical Aspects of Computer Science, STACS, Heribert Vollmer and Brigitte Vallée (Eds.). 44:1--44:14. https://doi.org/10.4230/LIPIcs.STACS.2017.44
[23]
Varun Kanade, Frederik Mallmann-Trenn, and Thomas Sauerwald. 2019. On coalescence time in graphs: When is coalescing as fast as meeting?: Extended Abstract. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA. 956--965. https://doi.org/10.1137/1.9781611975482.59
[24]
Jon Kleinberg. 2000. The small-world phenomenon: An algorithmic perspective. In Proceedings of the Thirty-second Annual ACM Symposium on Theory of Computing, STOC. 163--170. https://doi.org/10.1145/335305.335325
[25]
Christoph Lenzen, Nancy A. Lynch, Calvin Newport, and Tsvetomira Radeva. 2017. Searching without communicating: Tradeoffs between performance and selection complexity. Distributed Comput. 30, 3 (2017), 169--191. https://doi.org/ 10.1007/s00446-016-0283-x
[26]
Nicolas Levernier, Johannes Textor, Olivier Bénichou, and Raphaël Voituriez. 2020. Inverse Square Lévy Walks are not Optimal Search Strategies for ?? ? 2. Phys. Rev. Lett. 124 (2020), 080601. Issue 8. https://doi.org/10.1103/PhysRevLett.124.080601
[27]
Nicolas Levernier, Johannes Textor, Olivier Bénichou, and Raphaël Voituriez. 2021. Reply to "Comment on "Inverse Square Lévy Walks are not Optimal Search Strategies for "" " 2"'. Phys. Rev. Lett. 126 (Jan 2021), 048902. Issue 4. https://doi.org/10.1103/PhysRevLett.126.048902
[28]
Vladimir V. Palyulin, George Blackburn, Michael A. Lomholt, Nicholas W. Watkins, Ralf Metzler, Rainer Klages, and Aleksei V. Chechkin. 2019. First passage and first hitting times of Lévy flights and Lévy walks. New Journal of Physics 21, 10 (2019), 103028. https://doi.org/10.1088/1367--2630/ab41bb
[29]
David A Raichlen, Brian M Wood, Adam D Gordon, Audax ZP Mabulla, Frank W Marlowe, and Herman Pontzer. 2014. Evidence of Lévy walk foraging patterns in human hunter--gatherers. Proceedings of the National Academy of Sciences 111, 2 (2014), 728--733. https://doi.org/10.1073/pnas.1318616111
[30]
Nitzan Razin, Jean-Pierre Eckmann, and Ofer Feinerman. 2013. Desert ants achieve reliable recruitment across noisy interactions. Journal of the Royal Society Interface 10, 82 (2013), 20130079. https://doi.org/10.1098/rsif.2013.0079
[31]
Andy Reynolds, Giacomo Santini, Guido Chelazzi, and Stefano Focardi. 2017. The Weierstrassian movement patterns of snails. Royal Society open science 4, 6 (2017), 160941. https://doi.org/10.1098/rsos.160941
[32]
Andy M. Reynolds. 2018. Current status and future directions of Lévy walk research. Biology Open 7, 1 (2018), bio030106. https://doi.org/10.1242/bio.030106
[33]
Andrew M. Reynolds, Alan D. Smith, Don R. Reynolds, Norman L. Carreck, and Juliet L. Osborne. 2007. Honeybees perform optimal scale-free searching flights when attempting to locate a food source. Journal of Experimental Biology 210, 21 (2007), 3763--3770. https://doi.org/10.1242/jeb.009563
[34]
Michael F. Shlesinger and Joseph Klafter. 1986. Lévy walks versus Lévy flights. In On Growth and Form: Fractal and Non-Fractal Patterns in Physics. Springer Netherlands, Dordrecht, 279--283. https://doi.org/10.1007/978--94-009--5165--5_29
[35]
David W Sims, Emily J Southall, Nicolas E Humphries, Graeme C Hays, Corey JA Bradshaw, Jonathan W Pitchford, Alex James, Mohammed Z Ahmed, Andrew S Brierley, Mark A Hindell, et al. 2008. Scaling laws of marine predator search behaviour. Nature 451, 7182 (2008), 1098--1102. https://doi.org/10.1038/nature06518
[36]
Kohei Uchiyama. 2011. The First Hitting Time of a Single Point for Random Walks. Electron. J. Probab. 16 (2011), 1960--2000. https://doi.org/10.1214/EJP.v16--931
[37]
G. M. Viswanathan, V. Afanasyev, S. V. Buldyrev, E. J. Murphy, P. A. Prince, and H. E. Stanley. 1996. Lévy flight search patterns of wandering albatrosses. Nature 381, 6581 (1996), 413--415. https://doi.org/10.1038/381413a0
[38]
G. M. Viswanathan, Sergey V. Buldyrev, Shlomo Havlin, M. G. E. da Luz, E. P. Raposo, and H. Eugene Stanley. 1999. Optimizing the success of random searches. Nature 401, 6756 (1999), 911--914. https://doi.org/10.1038/44831
[39]
Gandhimohan M. Viswanathan, Marcos G. E. da Luz, Ernesto P. Raposo, and H. Eugene Stanley. 2011. The Physics of Foraging: An Introduction to Random Searches and Biological Encounters. Cambridge University Press, Cambridge ; New York. https://doi.org/10.1017/CBO9780511902680
[40]
G. M. Viswanathan, E. P. Raposo, and M. G. E. da Luz. 2008. Lévy flights and superdiffusion in the context of biological encounters and random searches. Physics of Life Reviews 5, 3 (2008), 133--150. https://doi.org/10.1016/j.plrev.2008. 03.002
[41]
Earl E. Werner and Donald J. Hall. 1974. Optimal Foraging and the Size Selection of Prey by the Bluegill Sunfish (Lepomis Macrochirus). Ecology 55, 5 (1974), 1042--1052. https://doi.org/10.2307/1940354
[42]
Annie S. Wu, R. Paul Wiegand, and Ramya Pradhan. 2020. Response probability enhances robustness in decentralized threshold-based robotic swarms. Swarm Intell. 14, 3 (2020), 233--258. https://doi.org/10.1007/s11721-020-00182--2
[43]
V. Zaburdaev, S. Denisov, and J. Klafter. 2015. Lévy walks. Rev. Mod. Phys. 87 (2015), 483--530. Issue 2. https://doi.org/10.1103/RevModPhys.87.483

Cited By

View all
  • (2023) The Lévy flight foraging hypothesis: comparison between stationary distributions and anomalous diffusion * Journal of Physics A: Mathematical and Theoretical10.1088/1751-8121/ad01ff56:48(485601)Online publication date: 7-Nov-2023
  • (2023)Extreme Statistics of Superdiffusive Lévy Flights and Every Other Lévy Subordinate Brownian MotionJournal of Nonlinear Science10.1007/s00332-023-09913-133:4Online publication date: 7-May-2023
  • (2022)Extreme hitting probabilities for diffusion*Journal of Physics A: Mathematical and Theoretical10.1088/1751-8121/ac819155:34(345002)Online publication date: 10-Aug-2022

Recommendations

Comments

Information & Contributors

Information

Published In

cover image ACM Conferences
PODC'21: Proceedings of the 2021 ACM Symposium on Principles of Distributed Computing
July 2021
590 pages
ISBN:9781450385480
DOI:10.1145/3465084
Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected].

Sponsors

Publisher

Association for Computing Machinery

New York, NY, United States

Publication History

Published: 23 July 2021

Permissions

Request permissions for this article.

Check for updates

Author Tags

  1. ants problem
  2. biological distributed algorithms
  3. distributed search
  4. hitting time
  5. infinite 2d grid

Qualifiers

  • Research-article

Funding Sources

  • ANR
  • Tor Vergata University Programme

Conference

PODC '21
Sponsor:

Acceptance Rates

Overall Acceptance Rate 740 of 2,477 submissions, 30%

Contributors

Other Metrics

Bibliometrics & Citations

Bibliometrics

Article Metrics

  • Downloads (Last 12 months)20
  • Downloads (Last 6 weeks)2
Reflects downloads up to 19 Oct 2024

Other Metrics

Citations

Cited By

View all
  • (2023) The Lévy flight foraging hypothesis: comparison between stationary distributions and anomalous diffusion * Journal of Physics A: Mathematical and Theoretical10.1088/1751-8121/ad01ff56:48(485601)Online publication date: 7-Nov-2023
  • (2023)Extreme Statistics of Superdiffusive Lévy Flights and Every Other Lévy Subordinate Brownian MotionJournal of Nonlinear Science10.1007/s00332-023-09913-133:4Online publication date: 7-May-2023
  • (2022)Extreme hitting probabilities for diffusion*Journal of Physics A: Mathematical and Theoretical10.1088/1751-8121/ac819155:34(345002)Online publication date: 10-Aug-2022

View Options

Get Access

Login options

View options

PDF

View or Download as a PDF file.

PDF

eReader

View online with eReader.

eReader

Media

Figures

Other

Tables

Share

Share

Share this Publication link

Share on social media