skip to main content
research-article

3D Modelling and Visualisation of Heterogeneous Cell Membranes in Blender

Published: 13 August 2018 Publication History

Abstract

Chlamydomonas reinhardtii cells have been in the focus of research for more than a decade, in particular due to its use as alternative source for energy production. However, the molecular processes in these cells are still not completely known, and 3D visualisations may help to understand these complex interactions and processes. In previous work, we presented the stereoscopic 3D (S3D) visualisation of a complete Chlamydomonas reinhardtii cell created with the 3D modelling framework Blender. This animation contained already a scene showing an illustrative membrane model of the thylakoid membrane. During discussion with domain experts, shortcomings of the visualisation for several detailed analysis questions have been identified and it was decided to redefine it.
A new modelling and visualisation pipeline based on a Membrane Packing Algorithm was developed, which can be configured via a user interface, enabling the composition of membranes employing published material. An expert user study was conducted to evaluate this new approach, with half the participants having a biology and the other half having an informatics background. The new and old Chlamydomonas thylakoid membrane models were presented on a S3D back projection system. The evaluation results reveal that the majority of participants preferred the new, more realistic membrane visualisation. However, the opinion varied with the expertise, leading to valuable conclusions for future visualisations. Interestingly, the S3D presentation of molecular structures lead to a positive change in opinion regarding S3D technology.

References

[1]
2001. 1jb0 - Photosystem I of cyanobacteria - Orientations of Proteins in Membranes (OPM) database. http://opm.phar.umich.edu/protein.php?search=1jb0
[2]
2004. 1rwt- Light-Harvesting Complex II- Orientations of Proteins in Membranes (OPM) database. http://opm.phar.umich.edu/protein.php?search=1rwt
[3]
2014. 2014-09-21 | 4th Int. CeBiTec Research Conference Bielefeld. http://www.webcitation.org/6xjDvOwr2
[4]
2017. AlgaeTEM - 6/17: Chlamydomonas#80501. http://remf.dartmouth.edu/images/algaeTEM/source/6.html
[5]
2017. Avanti Polar Lipids, Inc. https://avantilipids.com
[6]
2017. Jmol: an open-source browser-based HTML5 viewer and stand-alone Java viewer for chemical structures in 3D. http://jmol.sourceforge.net/
[7]
2017. MCell Home. http://www.mcell.org/
[8]
2017. Stereoscopic Displays and Applications conference - 3D Theatre Session. http://stereoscopic.org/3dcinema/index.html
[9]
2018. CELLmicrocosmos.org - project. http://cellmicrocosmos.org
[10]
N. Biere, M. Ghaffar, A. Doebbe, D. Jäger, N. Rothe, R. Klein K, Hofestädt, F. Schreiber, O. Kruse, and B. Sommer. 2018 in print. Heuristic modeling and 3D stereoscopic visualization of a Chlamydomonas reinhardtii cell. Journal of Integrative Bioinformatics 2, 15 (2018 in print), e53293.
[11]
Christian Bogen, Viktor Klassen, Julian Wichmann, Marco La Russa, Anja Doebbe, Michael Grundmann, Pauliina Uronen, Olaf Kruse, and Jan H. Mussgnug. 2013. Identification of Monoraphidium contortum as a promising species for liquid biofuel production. Biores. Techn. 133 (2013), 622--626.
[12]
Yusuf Chisti. 2007. Biodiesel from microalgae. Biotechnology advances 25, 3 (2007), 294--306.
[13]
Sébastien Doutreligne, Tristan Cragnolini, Samuela Pasquali, Philippe Derreumaux, and Marc Baaden. 2014. UnityMol: interactive scientific visualization for integrative biology. In Large Data Analysis and Visualization (LDAV), 2014 IEEE 4th Symposium on. IEEE, 109--110.
[14]
Blender Foundation. 2017. blender.org - Home of the Blender project - Free and Open 3D Creation Software. blender.org (2017). https://www.blender.org/
[15]
Paul Green-Armytage. 2010. A colour alphabet and the limits of colour coding. JAIC - Journal of the International Colour Association 5 (2010), 1--12.
[16]
Sebastian Grottel, Michael Krone, Christoph Müller, Guido Reina, and Thomas Ertl. 2015. MegaMol - a prototyping framework for particle-based visualization. IEEE Trans. Visualization and Computer Graphics 21, 2 (2015), 201--214.
[17]
B. Hess, C. Kutzner, D. van der Spoel, and E. Lindahl. 2008. Gromacs 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation. J. Chem. Theory Comput 4, 3 (2008), 435--447.
[18]
E. Hummel, P. Guttmann, S. Werner, B. Tarek, G. Schneider, M. Kunz, A. S. Frangakis, and B. Westermann. 2012. 3D ultrastructural organization of whole Chlamydomonas reinhardtii cells studied by nanoscale soft x-ray tomography. PloS One 7, 12 (2012), e53293.
[19]
S. Jo, J. Lim, J. Klauda, and W. Im. 2009. CHARMM-GUI Membrane Builder for Mixed Bilayers and its Application to Yeast Membranes. Biophysical Journal 97, 1 (2009), 50--58.
[20]
G. Johnson, D. Goodsell, L. Autin, S. Forli, M. Sanner, and A. Olson. 2014. 3D molecular models of whole HIV-1 virions generated with cellPACK. Faraday Discussions 169 (2014), 1--21.
[21]
G. T. Johnson, L. Autin, D. S. Goodsell, M. F. Sanner, and A. J. Olson. 2011. ePMV Embeds Molecular Modeling into Professional Animation Software Environments. Structure 19, 3 (2011), 293--303.
[22]
Rex A. Kerr, Thomas M. Bartol, Boris Kaminsky, Markus Dittrich, Jen-Chien Jack Chang, Scott B. Baden, Terrence J. Sejnowski, and Joel R. Stiles. 2008. Fast Monte Carlo simulation methods for biological reaction-diffusion systems in solution and on surfaces. SIAM journal on scientific computing 30, 6 (2008), 3126--3149.
[23]
T. Klein, L. Autin, B. Kozliková, D. S. Goodsell, A. Olson, M. E. Gröller, and I. Viola. 2017. Instant construction and visualization of crowded biological environments. IEEE Trans. Visualization and Computer Graphics (2017).
[24]
M. A. Lomize, I. D. Pogozheva, H. Joo, H. I. Mosberg, and A. L. Lomize. 2012. OPM database and PPM web server: resources for positioning of proteins in membranes. Nucleic Acids Research 40, D1 (2012), D370--D376.
[25]
L. Martínez, R. Andrade, E. G. Birgin, and J. M. Martínez. 2009. Packmol: a package for building initial configurations for molecular dynamics simulations. Journal of Computational Chemistry 30, 13 (2009), 2157--2164.
[26]
Teresa M. Mata, Antonio A. Martins, and Nidia S. Caetano. 2010. Microalgae for biodiesel production and other applications: a review. Renewable and sustainable energy reviews 14, 1 (2010), 217--232.
[27]
L. Mendiola-Morgenthaler, W. Eichenberger, and A. Boschetti. 1985. Isolation of chloroplast envelopes from Chlamydomonas. Lipid and polypeptide composition. Plant Science 41, 2 (Oct. 1985), 97--104.
[28]
The Presidents and Fellows of Harvard College. 2007. BioVisions: the Inner Life of the Cell. http://web.archive.org/web/20081215222914/http://multimedia.mcb.harvard.edu/
[29]
Nivedita Rajendiran and Jacob D. Durrant. 2017. Pyrite: a blender plugin for visualizing molecular dynamics simulations using industry-standard rendering techniques. Journal of Computational Chemistry (2017).
[30]
Mark A. Scaife, Alexandra Merkx-Jacques, David L. Woodhall, and Roberto E. Armenta. 2015. Algal biofuels in Canada: Status and potential. Renewable and Sustainable Energy Reviews 44 (2015), 620--642.
[31]
John Sheehan, Terri Dunahay, John Benemann, and Paul Roessler. 1998. Look back at the US department of energy's aquatic species program: biodiesel from algae; close-out report. Technical Report. National Renewable Energy Lab., Golden, CO.(US).
[32]
S. J. Singer and G. L. Nicolson. 1972. The fluid mosaic model of the structure of cell membranes. Science 175, 23 (1972), 720--731.
[33]
Björn Sommer. 2013. Membrane Packing Problems: A short Review on computational Membrane Modeling Methods and Tools. Computational and Structural Biotechnology Journal 5, 6 (2013), e201302014.
[34]
B. Sommer, C. Bender, T. Hoppe, C. Gamroth, and L. Jelonek. 2014. Stereoscopic cell visualization: from mesoscopic to molecular scale. Electronic Imaging, Proceedings of Stereoscopic Displays and Applications XXVIII 23, 1 (2014), 011007.1--10.
[35]
B. Sommer, T. Dingersen, C. Gamroth, S. E. Schneider, S. Rubert, J. Krüger, and K. J. Dietz. 2011. CELLmicrocosmos 2.2 MembraneEditor: a modular interactive shape-based software approach to solve heterogeneous Membrane Packing Problems. Journal of Chemical Information and Modeling 5, 51 (2011), 1165--1182.
[36]
B. Sommer, B. Kormeier, P. S. Demenkov, P. Arrigo, K. Hippe, Ö. Ates, A. V. Kochetov, V. A. Ivanisenko, N. A. Kolchanov, and R. Hofestädt. 2013. Subcellular Localization Charts: A new visual methodology for the semi-automatic localization of protein-related data sets. Journal of Bioinformatics and Computational Biology 11, 1 (2013), 1340005.
[37]
M. F. Zini, Y. Porozov, R. M. Andrei, T. Loni, C. Caudai, and M. ZoppÃĺ. 2010. BioBlender: fast and efficient all atom morphing of proteins using Blender game engine. Arxiv preprint arXiv:1009.4801 (2010).

Cited By

View all
  • (2020)Modern Scientific Visualizations on the WebInformatics10.3390/informatics70400377:4(37)Online publication date: 24-Sep-2020
  • (2018) Heuristic Modeling and 3D Stereoscopic Visualization of a Chlamydomonas reinhardtii Cell Journal of Integrative Bioinformatics10.1515/jib-2018-000315:2Online publication date: 11-Jul-2018

Index Terms

  1. 3D Modelling and Visualisation of Heterogeneous Cell Membranes in Blender

      Recommendations

      Comments

      Information & Contributors

      Information

      Published In

      cover image ACM Other conferences
      VINCI '18: Proceedings of the 11th International Symposium on Visual Information Communication and Interaction
      August 2018
      135 pages
      ISBN:9781450365017
      DOI:10.1145/3231622
      Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

      Publisher

      Association for Computing Machinery

      New York, NY, United States

      Publication History

      Published: 13 August 2018

      Permissions

      Request permissions for this article.

      Check for updates

      Author Tags

      1. Bioinformatics
      2. Cell Modelling
      3. Cell Visualization
      4. Membrane Packing Problems
      5. Stereoscopic 3D Visualization

      Qualifiers

      • Research-article
      • Research
      • Refereed limited

      Funding Sources

      Conference

      VINCI '18

      Acceptance Rates

      Overall Acceptance Rate 71 of 193 submissions, 37%

      Contributors

      Other Metrics

      Bibliometrics & Citations

      Bibliometrics

      Article Metrics

      • Downloads (Last 12 months)35
      • Downloads (Last 6 weeks)9
      Reflects downloads up to 24 Oct 2024

      Other Metrics

      Citations

      Cited By

      View all
      • (2020)Modern Scientific Visualizations on the WebInformatics10.3390/informatics70400377:4(37)Online publication date: 24-Sep-2020
      • (2018) Heuristic Modeling and 3D Stereoscopic Visualization of a Chlamydomonas reinhardtii Cell Journal of Integrative Bioinformatics10.1515/jib-2018-000315:2Online publication date: 11-Jul-2018

      View Options

      Get Access

      Login options

      View options

      PDF

      View or Download as a PDF file.

      PDF

      eReader

      View online with eReader.

      eReader

      Media

      Figures

      Other

      Tables

      Share

      Share

      Share this Publication link

      Share on social media