skip to main content
article

3D TV: a scalable system for real-time acquisition, transmission, and autostereoscopic display of dynamic scenes

Published: 01 August 2004 Publication History

Abstract

Three-dimensional TV is expected to be the next revolution in the history of television. We implemented a 3D TV prototype system with real-time acquisition, transmission, and 3D display of dynamic scenes. We developed a distributed, scalable architecture to manage the high computation and bandwidth demands. Our system consists of an array of cameras, clusters of network-connected PCs, and a multi-projector 3D display. Multiple video streams are individually encoded and sent over a broadband network to the display. The 3D display shows high-resolution (1024 × 768) stereoscopic color images for multiple viewpoints without special glasses. We implemented systems with rear-projection and front-projection lenticular screens. In this paper, we provide a detailed overview of our 3D TV system, including an examination of design choices and tradeoffs. We present the calibration and image alignment procedures that are necessary to achieve good image quality. We present qualitative results and some early user feedback. We believe this is the first real-time end-to-end 3D TV system with enough views and resolution to provide a truly immersive 3D experience.

Supplementary Material

MOV File (pps075.mov)

References

[1]
AKELEY, K., WATT, S., GIRSHICK, A., AND BANKS, M. 2004. A stereo display prototype with multiple focal distances. To appear in ACM Transaction on Graphics (Aug.).
[2]
BUEHLER, C., BOSSE, M., MCMILLAN, L., GORTLER, S., AND COHEN, M. 2001. Unstructured lumigraph rendering. In Computer Graphics, SIGGRAPH 2001 Proceedings, 425--432.
[3]
CARRANZA, J., THEOBALT, C., MAGNOR, M., AND SEIDEL, H. 2003. Free-viewpoint video of human actors. ACM Transactions on Graphics 22, 3, 569--577.
[4]
CHEN, S. E., AND WILLIAMS, L. 1993. View interpolation for image synthesis. In Computer Graphics, SIGGRAPH 93 Proceedings, 279--288.
[5]
FAVALORA, G., DORVAL, R., HALL, D., M., M. G., AND NAPOLI, J. 2001. Volumetric three-dimensional display system with rasterization hardware. In Stereoscopic Displays and Virtual Reality Systems VIII, vol. 4297 of SPIE Proceedings, 227--235.
[6]
FEHN, C., KAUFF, P., DE BEECK, M. O., ERNST, F., IJSSELSTEIJN, W., POLLEFEYS, M., GOOL, L. V., OFEK, E., AND SEXTON, I. 2002. An evolutionary and optimised approach on 3D-TV. In Proceedings of International Broadcast Conference, 357--365.
[7]
FLACK, J., HARMAN, P., AND FOX, S. 2003. Low bandwidth stereoscopic image encoding and transmission. In Stereoscopic Displays and Virtual Reality Systems X, vol. 5006 of Proceedings of SPIE, 206--215.
[8]
GABOR, D. 1948. A new microscopic principle. Nature, 161 (May), 777--779.
[9]
GORTLER, S., GRZESZCZUK, R., SZELISKI, R., AND COHEN, M. 1996. The lumigraph. In Computer Graphics, SIGGRAPH 96 Proceedings, 43--54.
[10]
GROSS, M., WUERMLIN, S., NAEF, M., LAMBORAY, E., SPAGNO, C., KUNZ, A., KOLLER-MEIER, E., SVOBODA, T., GOOL, L. V., LANG, S., STREHLKE, K., MOERE, A. V., AND STAADT, O. 2003. blue-c: A spatially immersive display and 3D video portal for telepresence. ACM Transactions on Graphics 22, 3, 819--828.
[11]
HUEBSCHMAN, M., MUNJULURI, B., AND GARNER, H. R. 2003. Dynamic holographic 3-D image projection. Optics Express, 11, 437--445.
[12]
HUMPHREYS, G., HOUSTON, M., NG, Y., FRANK, R., AHERN, S., KIRCHNER, P., AND KLOSOWSKI, J. 2002. Chromium: A stream processing framework for interactive graphics on clusters. ACM Transactions on Graphics 21, 3, 693--703.
[13]
IVES, F. E., 1903. Parallax stereogram and process for making same. U.S. Patent Number 725,567, filed 1902, Apr.
[14]
IVES, F. E. 1928. A camera for making parallax panoramagrams. Journal of the Optical Society of America, 17 (Dec.), 435--439.
[15]
IVES, H. E. 1929. Motion pictures in relief. Journal of the Optical Society of America, 18 (Feb.), 118--122.
[16]
IVES, H. E. 1931. The projection of parallax panoramagrams. Journal of the Optical Society of America, 21 (July), 397--409.
[17]
JAVIDI, B., AND OKANO, F., Eds. 2002. Three-Dimensional Television, Video, and Display Technologies. Springer-Verlag.
[18]
KAJIKI, Y., YOSHIKAWA, H., AND HONDA, T. 1996. Three-dimensional display with focused light array. In Practical Holography X, vol. 2652 of SPIE Proceedings, 106--116.
[19]
KANADE, T., RANDER, P., AND NARAYANAN, P. 1997. Virtualized reality: Constructing virtual worlds from real scenes. IEEE Multimedia, Immersive Telepresence 4, 1 (Jan.), 34--47.
[20]
KANG, S. B., UYTTENDAELE, M., WINDER, S., AND SZELISKI, R. 2003. High dynamic range video. ACM Transactions on Graphics 22, 3, 319--325.
[21]
KANOLT, C. W., 1918. Photographic method and apparatus. U.S. Patent Number 1,260,682, filed 1915, Mar.
[22]
LAMBORAY, E., WÜRMLIN, S., AND GROSS, M. 2004. Real-time streaming of point-based 3D video. In To appear in: Proceedings of IEEE Virtual Reality.
[23]
LEITH, E., AND UPATNIEKS, J. 1962. Reconstructed wavefronts and communication theory. Journal of the Optical Society of America 52, 10 (Oct.), 1123--1130.
[24]
LEVOY, M., AND HANRAHAN, P. 1996. Light field rendering. In Computer Graphics, SIGGRAPH 96 Proceedings, 31--42.
[25]
LI, K., CHEN, H., CHEN, Y., CLARK, D., COOK, P., DAMIANAKIS, S., ESSL, G., FINKELSTEIN, A., FUNKHOUSER, T., HOUSEL, T., KLEIN, A., LIU, Z., PRAUN, E., SAMANTA, R., SHEDD, B., SINGH, J. P., TZANETAKIS, G., AND ZHENG, J. 2002. Building and using a scalable display wall system. IEEE Computer Graphics and Applications 20, 4 (Dec.), 29--37.
[26]
LIAO, H., IWAHARA, M., HATA, N., SAKUMA, I., DOHI, T., KOIKE, T., MOMOI, Y., MINAKAWA, T., YAMASAKI, M., TAJIMA, F., AND TAKEDA, H. 2002. High-resolution integral videography autostereoscopic display using multi-projector. In Proceedings of the Ninth International Display Workshop, 1229--1232.
[27]
LIPPMANN, G. 1908. Epreuves reversibles donnant la sensation du relief. Journal of Physics 7, 4 (Nov.), 821--825.
[28]
MAENO, K., FUKAYA, N., NISHIKAWA, O., SATO, K., AND HONDA, T. 1996. Electroholographic display using 15-megapixel LCD. In Practical Holography X, vol. 2652 of SPIE Proceedings, 15--23.
[29]
MAGNOR, M., RAMANATHAN, P., AND GIROD, B. 2003. Multiview coding for image-based rendering using 3-D scene geometry. IEEE Trans. Circuits and Systems for Video Technology 13, 11 (Nov.), 1092--1106.
[30]
MATUSIK, W., BUEHLER, C., RASKAR, R., GORTLER, S., AND MCMILLAN, L. 2000. Image-based visual hulls. In Computer Graphics, SIGGRAPH 2000 Proceedings, 369--374.
[31]
MCKAY, S., MAIR, G., MASON, S., AND REVIE, K. 2000. Membrane-mirrorbased autostereoscopic display for teleoperation and telepresence applications. In Stereoscopic Displays and Virtual Reality Systems VII, vol. 3957 of SPIE Proceedings, 198--207.
[32]
MILLER, G. 1995. Volumetric hyper-reality, a computer graphics holy grail for the 21st century? In Proceedings of Graphics Interface '95, Canadian Information Processing Society, 56--64.
[33]
MOORE, J. R., DODGSON, N., TRAVIS, A., AND LANG, S. 1996. Time-multiplexed color autostereoscopic display. In Symposium on Steroscopic Displays and Applications VII, vol. 2653 of Proceedings of SPIE, 1--9.
[34]
NAEMURA, T., TAGO, J., AND HARASHIMA, H. 2002. Realtime video-based modeling and rendering of 3D scenes. IEEE Computer Graphics and Applications (Mar.), 66--73.
[35]
NAKAJIMA, S., NAKAMURA, K., MASAMUNE, K., SAKUMA, I., AND DOHI, T. 2001. Three-dimensional medical imaging display with computer-generated integral photography. Computerized Medical Imaging and Graphics 25, 3, 235--241.
[36]
OKOSHI, T. 1976. Three-Dimensional Imaging Techniques. Academic Press.
[37]
OOI, R., HAMAMOTO, T., NAEMURA, T., AND AIZAWA, K. 2001. Pixel independent random access image sensor for real time image-based rendering system. In IEEE International Conference on Image Processing, vol. II, 193--196.
[38]
PERLIN, K., PAXIA, S., AND KOLLIN, J. 2000. An autostereoscopic display. In SIGGRAPH 2000 Conference Proceedings, vol. 33, 319--326.
[39]
RAMANATHAN, P., KALMAN, M., AND GIROD, B. 2003. Rate-distortion optimized streaming of compressed light fields. In IEEE International Conference on Image Processing, 277--280.
[40]
RASKAR, R., WELCH, G., CUTTS, M., LAKE, A., STESIN, L., AND FUCHS, H. 1998. The office of the future: A unified approach to image-based modeling and spatially immersive displays. In Proceedings of SIGGRAPH 98, 179--188.
[41]
RASKAR, R., BROWN, M., YANG, R., CHEN, W., WELCH, G., TOWLES, H., SEALES, B., AND FUCHS, H. 1999. Multi-projector displays using camera-based registration. In IEEE Visualization, 161--168.
[42]
SCHIRMACHER, H., MING, L., AND SEIDEL, H.-P. 2001. On-the-fly processing of generalized lumigraphs. In Proceedings of Eurographics 2001, vol. 20 of Computer Graphics Forum, Eurographics Association, 165--173.
[43]
SEETZEN, H., HEIDRICH, W., STUERZLINGER, W., WARD, G., WHITEHEAD, L., TRENTACOSTE, M., GHOSH, A., AND VOROZCOVS, A. 2004. High dynamic range display systems. To appear in ACM Transaction on Graphics (Aug.).
[44]
SMOLIC, A., AND KIMATA, H., 2003. Report on 3DAV exploration. ISO/IEC JTCI/SC29/WG11 Document N5878, July.
[45]
ST.-HILLAIRE, P., LUCENTE, M., SUTTER, J., PAPPU, R., C. J. SPARRELL, AND BENTON, S. 1995. Scaling up the MIT holographic video system. In Proceedings of the Fifth International Symposium on Display Holography, SPIE, 374--380.
[46]
STANLEY, M., CONWAY, P., COOMBER, S., JONES, J., SCATTERGOOD, D., SLINGER, C., BANNISTER, B., BROWN, C., CROSSLAND, W., AND TRAVIS, A. 2000. A novel electro-optic modulator system for the production of dynamic images from giga-pixel computer generated holograms. In Practical Holography XIV and Holographic Materials VI, vol. 3956 of SPIE Proceedings, 13--22.
[47]
STEWART, J., YU, J., GORTLER, S., AND MCMILLAN, L. 2003. A new reconstruction filter for undersampled light fields. In Eurographics Symposium on Rendering, ACM International Conference Proceeding Series, 150--156.
[48]
STONE, M. 2001. Color and brightness appearance issues in tiled displays. Computer Graphics and Applications 21, 6 (Sept.), 58--67.
[49]
TANIMOTO, M., AND FUJI, T., 2003. Ray-space coding using temporal and spatial predictions. ISO/IEC JTC1/SC29/WG11 Document M10410, Dec.
[50]
WILBURN, B., SMULSKI, M., LEE, H. K., AND HOROWITZ, M. 2002. The light field video camera. In Media Processors 2002, vol. 4674 of SPIE, 29--36.
[51]
YANG, J. C., EVERETT, M., BUEHLER, C., AND MCMILLAN, L. 2002. A real-time distributed light field camera. In Proceedings of the 13th Eurographics Workshop on Rendering, Eurographics Association, 77--86.
[52]
ZHANG, Z. 2000. A flexible new technique for camera calibration. IEEEE Transactions on Pattern Analysis and Machine Intelligence 22, 11, 1330--1334.
[53]
ZITNICK, L., KANG, S. B., UYTTENDAELE, M., WINDER, S., AND SZELISKI, R. 2004. High-quality video view interpolation using a layered representation. To appear in ACM Transaction on Graphics (Aug.).

Cited By

View all
  • (2024)Light Field Display Point RenderingProceedings of the ACM on Computer Graphics and Interactive Techniques10.1145/36513007:1(1-18)Online publication date: 13-May-2024
  • (2024)Time multiplexing multi-view display using slit mirror array and light emitting diode illuminated digital micromirror deviceJournal of Information Display10.1080/15980316.2024.2329124(1-17)Online publication date: 7-Apr-2024
  • (2023)Scaling VR Video Conferencing2023 IEEE Conference Virtual Reality and 3D User Interfaces (VR)10.1109/VR55154.2023.00080(648-657)Online publication date: Mar-2023
  • Show More Cited By

Index Terms

  1. 3D TV: a scalable system for real-time acquisition, transmission, and autostereoscopic display of dynamic scenes

    Recommendations

    Comments

    Information & Contributors

    Information

    Published In

    cover image ACM Transactions on Graphics
    ACM Transactions on Graphics  Volume 23, Issue 3
    August 2004
    684 pages
    ISSN:0730-0301
    EISSN:1557-7368
    DOI:10.1145/1015706
    Issue’s Table of Contents
    Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]

    Publisher

    Association for Computing Machinery

    New York, NY, United States

    Publication History

    Published: 01 August 2004
    Published in TOG Volume 23, Issue 3

    Permissions

    Request permissions for this article.

    Check for updates

    Author Tags

    1. Autostereoscopic displays
    2. camera arrays
    3. image-based rendering
    4. lightfields
    5. multiview displays
    6. projector arrays

    Qualifiers

    • Article

    Contributors

    Other Metrics

    Bibliometrics & Citations

    Bibliometrics

    Article Metrics

    • Downloads (Last 12 months)57
    • Downloads (Last 6 weeks)3
    Reflects downloads up to 22 Oct 2024

    Other Metrics

    Citations

    Cited By

    View all
    • (2024)Light Field Display Point RenderingProceedings of the ACM on Computer Graphics and Interactive Techniques10.1145/36513007:1(1-18)Online publication date: 13-May-2024
    • (2024)Time multiplexing multi-view display using slit mirror array and light emitting diode illuminated digital micromirror deviceJournal of Information Display10.1080/15980316.2024.2329124(1-17)Online publication date: 7-Apr-2024
    • (2023)Scaling VR Video Conferencing2023 IEEE Conference Virtual Reality and 3D User Interfaces (VR)10.1109/VR55154.2023.00080(648-657)Online publication date: Mar-2023
    • (2022)Integrated Multi-view 3D Image Capture and Motion Parallax 3D Display SystemEMITTER International Journal of Engineering Technology10.24003/emitter.v10i1.604(1-13)Online publication date: 22-Mar-2022
    • (2022)Laser light field displayAdvances in Display Technologies XII10.1117/12.2608113(7)Online publication date: 28-Mar-2022
    • (2022)Theory and Implementation of Integral IlluminationIEEE Access10.1109/ACCESS.2021.313910810(939-950)Online publication date: 2022
    • (2022)Demonstration of a novel multi-cameras light field rendering system and its applicationOptik10.1016/j.ijleo.2021.167759253(167759)Online publication date: Mar-2022
    • (2022)Design and calibration of curved and see-through integral imaging 3D displayVirtual Reality10.1007/s10055-022-00686-827:2(761-775)Online publication date: 5-Sep-2022
    • (2021)Fast and Accurate Light Field View Synthesis by Optimizing Input View SelectionMicromachines10.3390/mi1205055712:5(557)Online publication date: 13-May-2021
    • (2021)Wide viewing angle with a downsized system in projection-type integral photography by using curved mirrorsOptics Express10.1364/OE.41872929:8(12066)Online publication date: 2-Apr-2021
    • Show More Cited By

    View Options

    Get Access

    Login options

    Full Access

    View options

    PDF

    View or Download as a PDF file.

    PDF

    eReader

    View online with eReader.

    eReader

    Media

    Figures

    Other

    Tables

    Share

    Share

    Share this Publication link

    Share on social media