Skip to main content
Log in

Thermomechanical Waves in the Elastic Lithosphere–Viscous Asthenosphere System

  • Published:
Fluid Dynamics Aims and scope Submit manuscript

Abstract—

The problem of the development of thermomechanical waves in the system consisting of two horizontal layers with rheology of a linearly elastic medium for the upper layer (lithosphere) and a viscous fluid for the lower layer (asthenosphere) is considered with regard to phase transition on their common boundary. The exact solution to the problem is found and its properties as functions of the parameters are studied. It is shown that for the characteristic physical parameters of the lithosphere and asthenosphere there exist solutions in the form of moderately damped strain tectonic waves and a geophysical interpretation of the results obtained is given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Mogi, K., Relationship between shallow and deep seismicity in the western Pacific region, Tectonophysics, 1973, vol. 17, nos. 1–2.

  2. Vil’kovich, U.V. and Shnirman, M.G., Waves of migration of epicenters (examples and models), in: Matematicheskie modeli stroeniya Zemli i prognoz zemletryasenii (Mathematical Models of the Earth’s Structure and Earthquake Forecast), Computational Seismology, issue 14, Moscow: Nauka, 1982, pp. 27–37.

  3. Gamburtsev, A.G., Seismicheskii monitoring litosfery (Seismic Lithosphere Monitoring), Moscow: Nauka, 1992.

  4. Kasahara, K., Migration of crustal deformation, Tectonophysics, 1979, vol. 52, nos. 1–4, pp. 329–341.

    Article  ADS  Google Scholar 

  5. Allen, C.R., Active faulting in northern Turkey, in: California Institute of Technology, California, 1969, pp. 32–34.

    Google Scholar 

  6. Sherman, S.I. and Gorbunova, E.A., Wave nature of faulting activation in Central Asia on the basis of seismic monitoring, Fizicheskaya Mezomekhanika, 2008, vol. 11, no. 1, pp. 115–122.

    Google Scholar 

  7. Bykov, V.G., Nelineinye volnovye protsessy v geologicheskikh sredakh (Nonlinear Wave Processes in Geological Media), Vladivostok: Dal’nauka, 2000.

  8. Bykov, V.G. and Trofimenko, S.V., Slow strain waves in blocky geological media from GPS and seismological observations on the Amurian plate, Nonlinear Processes in Geophysics, 2016, vol. 23 (6), pp. 467–475. https://doi.org/10.5194/npg-23-467-2016

    Article  ADS  Google Scholar 

  9. Bykov, V.G., Nonlinear waves and solitons in models of fault block geological media, Russian Geology and Geophysics, 2015, vol. 56 (5), pp. 793–803. https://doi.org/10.1016/j.rgg.2015.04.010

    Article  ADS  Google Scholar 

  10. Sherman, S.I., Deformation waves as the trigger mechanism of seismic activity in the seismic zones of the continental lithosphere, Geodinamika i Tektonofizika, 2013, vol. 4, no. 2, pp. 83–117. https://doi.org/10.5800/GT-2013-4-2-0093

    Article  Google Scholar 

  11. Gorbunova, E.A. and Sherman S.I., Slow deformation waves in the lithosphere: Registration, parameters, and geodynamic analysis (Central Asia), Russian Journal of Pacific Geology, 2012, vol. 6 (1), pp. 13–20. https://doi.org/10.1134/S18197

    Article  Google Scholar 

  12. Stepashko, A.A., Structure of the lithospheric mantle of Siberian craton and seismodynamics of deformation waves in the Baikal seismic zone, Geodinamika i tektonofizika, 2013, vol. 4, no. 4, pp. 387–415. https://doi.org/10.5800/GT-2013-4-4-0108

  13. Trofimenko, S.V., Bykov, V.G., and Merkulova, T.V., Space-time model for migration of weak earthquakes along the northern boundary of the Amurian microplate, J. Seismology, 2017, vol. 21 (2), pp. 277–286. https://doi.org/10.1007/s10950-016-,9600-x

    Article  ADS  Google Scholar 

  14. Savage, J.A., A theory of creep waves propagation along a transform faults, J. Geophys. Res., 1971, vol. 76 (8), pp. 1954–1966. https://doi.org/10.1029/JB076i008p01954

    Article  ADS  Google Scholar 

  15. Guberman, Sh.A., D-waves and earthquakes, in: Teoriya i analiz seismologicheskikh nablyudenii (Theory and Analysis of Seismological Observations), Computational Seismology, Iss. 12, Moscow: Nauka, 1979, pp. 158–188.

  16. Sholz, C., A physical interpretation of the Haicheng earthquake prediction, Nature, 1977, vol. 267 (5607), pp. 121–124. https://doi.org/10.1038/267121a0

    Article  ADS  Google Scholar 

  17. Makarov, P.V. and Peryshkin, A.Y., Slow motions as inelastic strain autowaves in ductile and brittle media, Physical Mesomechanics, 2017, vol. 20 (2), pp. 209–221. https://doi.org/10.1134/S1029959917020114

    Article  Google Scholar 

  18. Kuz’min, Yu.O. and Zhukov, V.S., Sovremennaya geodinamika i variatsii fizicheskikh svoistv gornykh porod (Modern Geodynamics and Variations in the Physical Properties of Rocks), Moscow: Izd-vo Moskovskogo Gosudarstvennogo Gornogo Universiteta, 2004.

  19. Elsasser, W., Convection and stress propagation in the upper mantle, in: Application of Modern Physics to Earth and Planet. Interior, New York: Wiley, 1969, pp. 223–246.

    Google Scholar 

  20. Melosh, H.J., Nonlinear stress propagation in the Earth’s upper mantle, J. Geophys. Res., 1976, no. 32 (81), pp. 5621–5632.

  21. Kasahara, K., Earthquake Mechanics, Cambridge: Cambridge University Press, 1981.

    Google Scholar 

  22. Dubrovskii, V.A., Tecftonic waves, Izv. AN SSSR, Fizika Zemli, 1985, no. 1, pp. 29–33.

  23. Nikolaevskii, V.N. and Ramazanov, T.K., Theory of fast tectonic waves, Prikl. Mat. Mekh., 1985, vol. 49, no. 3, pp. 426–469.

    Google Scholar 

  24. Malamud, A.S. and Nikolaevskii, V.N., Tsykly zemletraysenii i tektonicheskie volny (Earthquake Cycles and Tectonic Waves), Dushanbe: Donish, 1989.

  25. Nikolaevskii, V.N. and Ramazanov, T.K., On the waves of interaction between the lithosphere and asthenosphere, in: Gidrogeodinamicheskie predvesniki zemletraysenii (Hydrogeodynamic Earthquake Precursors), Moscow: Nauka, 1984, pp. 120–128.

  26. Eringen, A.C., Theory of Micropolar Elasticity, Fracture, New York: Academic, 1968.

    MATH  Google Scholar 

  27. Mikhailov, D.N. and Nikolaevskii, V.N., Tectonic waves of the rotary type with generation of seismic signals, Fizika Zemli, 2000, no. 11, pp. 3–10.

  28. Garagash, I.A., Microstrains of a prestressed discrete geophysical medium, Dokl. Ross. Akad. Nauk, 1996, vol. 347, no. 1, pp. 95–98.

    Google Scholar 

  29. Garagash, I.A. and Lobkovskii, L.I., Strain tectonic waves as the possible trigger mechanism of the activation of methane emission in the Arctic zone, Arktika: Ekologiya i Ekonomika, 2021, vol. 11, no. 1, pp. 42–50.

    Google Scholar 

  30. Landau, L.D. and Lifshitz, E.M., Theory of Elasticity, Pergamon Press, 1986.

    MATH  Google Scholar 

  31. Landau, L.D. and Lifshitz, E.M., Hydrodynamics, Pergamon Press, 1986.

    Google Scholar 

  32. Turcotte, D. and Schubert, J., Geodynamics, Cambridge: Cambridge University Press, 1982.

    Google Scholar 

  33. Lyubov, B.Ya., Teoriya kristallizatsii v bol’shikh ob’’emakh (Theory of Crystallization in Large Volumes), Moscow: Nauka, 1975.

Download references

Funding

The work was carried out within the framework of the state tasks of Shirshov Institute of Oceanology of the Russian Academy of Sciences (theme no. 0128-2021-0004) and the Institute for Geothermics Problems and Renewable Energetics, Affiliation Branch of the Joint Institute for High Temperatures of the Russian Academy of Sciences (theme no. AAAA-A19-119111390085-7).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to L. I. Lobkovsky or M. M. Ramazanov.

Additional information

Translated by E.A. Pushkar

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lobkovsky, L.I., Ramazanov, M.M. Thermomechanical Waves in the Elastic Lithosphere–Viscous Asthenosphere System. Fluid Dyn 56, 765–779 (2021). https://doi.org/10.1134/S0015462821060100

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0015462821060100

Keywords:

Navigation