Skip to main content
Log in

Slow motions as inelastic strain autowaves in ductile and brittle media

  • Published:
Physical Mesomechanics Aims and scope Submit manuscript

Abstract

Here we provide a review of research on slow motions and strain waves in the Earth and propose a substantiated hypothesis that all stress-strain perturbations in the form of slow waves propagating in solids and geomedia, including plastic waves in metals and waves in faults of different scales, are of common physical nature. Loaded solids and geomedia are active hierarchically organized multiscale systems that display nonlinear dynamics and lose their stability when disturbed by any dynamic processes at block boundaries, e.g., displacements in fault zones. Such a medium cooperatively responds to parametric excitation by generating slow strain waves (autowaves) as a way of its self-organization. In support of the proposed concept, a consistent mathematical model is suggested for describing the evolution of stress-strain states and slow strain autowaves in an unstable elastoplastic medium, and examples of simulations are presented for strain autowaves in ductile materials under tension and quasi-brittle materials and geomedia with a fault zone under compression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Goldin, S.V., Yushin, V.I., Ruzhich, V.V., and Smekalkin, O.P., Slow Motions: Myth or Reality? Physical Basics for Rock Failure Prediction: Proc. IX Int. Workshop, Krasnoyarsk, 2002, Novosibirsk: Geo, 2002, pp. 213–220.

    Google Scholar 

  2. Bykov, V.G., Strain Waves in the Earth: Theory, Field Data, and Models, Rus. Geol. Geophys., 2005, vol. 46, no. 11, pp. 1158–1170.

    Google Scholar 

  3. Guberman, Sh.A., D Waves and Earthquakes. Theory and Analysis of Seismic Observations, Comput. Seismol., 1980, no. 12, p. 136.

    Google Scholar 

  4. Nevsky, M.V., Fews, G.S., and Morozova, L.A., Strain Propagation: Field Data and Models, Physical Basics of Seismic Monitoring (Unconventional Geophysics), Moscow: Nauka, 1991, pp. 39–56.

    Google Scholar 

  5. Nevsky, M.V., Artamonov, A.M., and Riznichenko, O.Yu., Strain Waves and Seismic Energy, Dokl. Akad. Nauk SSSR, 1991, vol. 318, no. 2, pp. 316–320.

    Google Scholar 

  6. Bykov, V.G., Waves of Activation in Crustal Faults, Tikhookean. Geol., 2000, vol. 19, no. 1, pp. 104–108.

    Google Scholar 

  7. Bykov, V.G., Nonlinear Wave Processes in Geological Media, Vladivostok: Dalnauka, 2000.

    Google Scholar 

  8. Malamud, A.S. and Nikolaevsky, V.N., Recurrence of Pamirs-Hindu Kush Earthquakes and Tectonic Waves in Subducting Plates, Dokl. Akad. Nauk SSSR, 1983, vol. 269, pp. 1075–1078.

    Google Scholar 

  9. Malamud, A.S. and Nikolaevsky, V.N., Cyclic Seismotectonic Events at the Indian Plate Edges, Dokl. Akad. Nauk SSSR, 1985, vol. 283, no. 6, pp. 1333–1337.

    Google Scholar 

  10. Malamud, A.S. and Nikolaevsky, V.N., Mantle Fault Activation Beneath the Hindu Kush in 1983-1985, Dokl. Akad Nauk. SSSR, 1989, vol. 308, no. 2, pp. 324–328.

    Google Scholar 

  11. Psakhie, S.G., Ruzhich, V.V., Smekalin, O.P., and Shilko, E.V., Response of the Geological Media to Dynamic Loading, Phys. Mesomech., 2001, vol. 4, no. 1, pp. 63–66.

    Google Scholar 

  12. Kuzmin, Yu.O., Deformation Autowaves in Fault Zones, Izv. Phys. Solid Earth, 2012, vol. 48, no. 1, pp. 1–16.

    Article  ADS  MathSciNet  Google Scholar 

  13. Kuzmin, Yu.O., Recent Geodynamics of the Faults and Paradoxes of the Rates of Deformation, Izv. Phys. Solid Earth, 2013, vol. 49, no. 5, pp. 626–642.

    Article  ADS  Google Scholar 

  14. Vostrikov, V.I., Ruzhich, V.V., and Federyaev, O.V., Monitoring Rock Fall-Hazardous Sites in Open Pit Walls, J. Min. Sci., 2009, vol. 45, no. 6, pp. 620–627.

    Article  Google Scholar 

  15. Levina, E.A. and Ruzhich, V.V., Earthquake Migration as a Manifestation of Strain Waves in the Earth Crust, Trigger Effects in Geosystems: Proc. All-Russian Workshop, Moscow: Geos, 2010, pp. 71–78.

    Google Scholar 

  16. Oparin, V.N., Sashurin, A.D., Leontiev, A.V., et al., Earth’ s Crust Destruction and Self-Organization in the Areas of Severe Mining Impact, Melnikov, N.N., Ed., Novosibirsk: SO RAN, 2012.

    Google Scholar 

  17. Levina, E.A. and Ruzhich, V.V., The Seismicity Migration Study Based on Space-Time Diagrams, Geodyn. Tectonophys., 2015, vol. 6, no. 2, pp. 225–240.

    Article  Google Scholar 

  18. Sherman, S.I. and Gorbunova, E.A., Wave Origin of Fault Activation in the Central Asia on the Basis of Seismic Monitoring, Fiz. Mezomekh., 2008, vol. 11, no. 1, pp. 115122.

    Google Scholar 

  19. Gorbunova, E.A. and Sherman, S.I., Slow Deformation Waves in the Lithosphere: Registration, Parameters, and Geodynamic Analysis (Central Asia), Russ. J. Pac. Geol., 2012, vol. 6, no. 1, pp. 13–20.

    Article  Google Scholar 

  20. Mukhamediev, ShA., Grachev, A.F., and Yunga, S.L., Nonstationary Dynamic Control of Seismic Activities of Platform Regions by Mid-Ocean Ridges, Izv. Phys. Solid Earth, 2008, vol. 44, no. 1, pp. 9–17.

    Article  ADS  Google Scholar 

  21. Guberman, Sh.A., On Certain Mechanisms of Earthquake Initiation, Dokl. Akad. Nauk SSSR, 1975, vol. 224, no. 3, pp.573-576.

    Google Scholar 

  22. Zhadin, V.V., Space-and-Time Relationships between Strong Earthquakes, Izv. Phys. Solid Earth, 1984, no. 1, pp. 25–28.

    Google Scholar 

  23. Androsov, I.V., Zhadin, V.V., and Potashnikov, I.A., Space-Time Structure of Earthquake Migration and Seismic Belts, Dokl. Akad. Nauk SSSR, 1989, vol. 306, no. 6, pp. 1339–1342.

    ADS  Google Scholar 

  24. Zuev, L.B., Danilov, V.I., and Barannikova, S.A., Physics of Plastic Flow Macrolocalization, Novosibirsk: Nauka, 2008.

    Google Scholar 

  25. Zuev, L.B., On the Wave Character of Plastic Flow. Macroscopic Autowaves of Deformation Localization, Phys. Mesomech., 2006, vol. 9, no. 3–4, pp. 43–50.

    Google Scholar 

  26. Danilov, V.I., Barannikova, S.A., and Zuev, L.B., Localized Strain Autowaves at the Initial Stage of Plastic Flow in Single Crystals, Tech. Phys. Russ. J. Appl. Phys., 2003, vol. 48, no. 11, pp. 1429–1435.

    Google Scholar 

  27. Makarov, P.V. and Romanova, V.A., New Criterion for Plastic Flow by Deformation at Mesoscale, Mat. Model., 2000, vol. 12, no. 11, pp. 91–101.

    MathSciNet  MATH  Google Scholar 

  28. Makarov, P.V., Romanova, V.A., and Balokhonov, R.R., Numerical Modeling of Heterogeneous Plastic Deformation with Consideration for Generation of Localized Plastic Shears at Interfaces and Free Surfaces, Phys. Mesomech., 2001, vol. 4, no. 5, pp. 29–38.

    Google Scholar 

  29. Peryshkin, A.Yu. and Makarov, P.V., Modeling of Slow Strain Fronts in Strong Media. Their Role in Critical States, Proc. Int. Conf. on Modern Science, Moscow, 2015, Kirov: MCNIP, 2015, pp. 32–40.

    Google Scholar 

  30. Zuev, L.B., Barannikova, S.A., and Nadezhkin, M.V., On Slow Wave Processes in Rocks, Proc. Int. Conf. on Advanced Materials in Construction and Engineering, Tomsk, 2014, pp. 582–589.

    Google Scholar 

  31. Makarov, P.V., Mathematical Theory of Evolution of Loaded Solids and Media, Phys. Mesomech., 2008, vol. 11, no. 5–6, pp. 213–227.

    Article  Google Scholar 

  32. Makarov, P.V., Self-Organized Criticality of Deformation and Prospects for Fracture Prediction, Phys. Mesomech., 2010, vol. 13, no. 5–6, pp. 292–305.

    Article  Google Scholar 

  33. Makarov, P.V. and Eremin, M.O., Jerky Flow Model as a Basis for Research in Deformation Instabilities, Phys. Mesomech., 2014, vol. 17, no. 1, pp. 62–80.

    Article  Google Scholar 

  34. Makarov, P.V., Evolutionary Nature of Destruction of Solids and Media, Phys. Mesomech., 2007, vol. 10, no. 3-4, pp.134–147.

    Article  Google Scholar 

  35. Makarov, P.V., Smolin, I.Yu., Stefanov, Yu.P., et al., Nonlinear Mechanics of Geological Materials and Media, Novosibirsk: Geo, 2007.

    Google Scholar 

  36. Makarov, P.V., Evolutionary Nature of Structure Formation in Lithospheric Material: Universal Principle for Fractality of Solids, Russ. Geol. Geophys. 2007, vol. 48, no. 7, pp. 558–574.

    Article  ADS  Google Scholar 

  37. Ruzhich, V.V., Truskov, V.A., Chernykh, E.N., and Smekalkin, O.P., Recent Movements in Near-Baikal Fault Zones and Mechanisms of Their Initiation, Geol. Geofiz., 1999, vol. 40, no. 3, pp. 360–372.

    Google Scholar 

  38. Nevsky, M.V., Morozova, L.A., and Zhurba, M.N., Effect of Propagation of Long-Period Strain Perturbations, Dokl. Akad. Nauk SSSR, 1997, vol. 296, no. 5, pp. 1090–1094.

    Google Scholar 

  39. Nersesov, I.L., Lukk, A.A., Zhuravlev, VI., and Galaganov, O.N., On Strain Wave Propagation in the Crust of South Central Asia, Fiz. Zemli, 1990, no. 5, pp. 102–112.

    Google Scholar 

  40. Lukk, A.A. and Nersesov, I.L., Temporal Variations of Some Parameters of Seismotectonic Processes, Fiz. Zemli, 1982, no. 3, pp. 10–27.

    Google Scholar 

  41. Gamburtseva, N.G., Lyuke, E.I., Nikolaevskii, V.N., et al., Periodic Variations of Seismic Wave Parameters in the Lithosphere on Powerful Explosions, Dokl. Akad. Nauk SSSR, 1982, vol. 266, no. 6, pp. 1349–1353.

    Google Scholar 

  42. Rodionov, V.N., Adushkin, V.V., Kostyuchenko, V.N., et al., Mechanical Effects of an Underground Explosion, Moscow: Nedra, 1971.

    Google Scholar 

  43. Abduvaliev, A.K., Voitov, G.I., and Rudakov, V.P., Radon Precursors of Certain Strong Earthquakes in Central Asia, Dokl. Akad. Nauk, 1986, vol. 291, no. 4, pp. 924–927.

    Google Scholar 

  44. Wilkins, M.L., Calculation of Elastic-Plastic Flow, Methods in Computational Physics, Vol. 3, Alder, B., Fernbach, S., and Rotenberg, M., Eds., New York: Academic Press, 1964, p. 211.

    Google Scholar 

  45. Makarov, P.V. and Eremin, M.O., Fracture Model of Brittle and Quasibrittle Materials and Geomedia, Phys. Mesomech., 2013, vol. 16, no. 3, pp. 207–226.

    Article  Google Scholar 

  46. Garagash, I.A. and Nikolaevskii, V.N., Non-Associated Flow Rules and Plastic Strain Localization, Usp. Mekh., 1989, vol. 12, no. 1, pp. 131–183.

    Google Scholar 

  47. Hill, D.P., Johnston, M.J.S., Langbein, J.O., and Bilham, R., Response of Long Valley Caldera to the M = 7.3 Landers, California, Earthquake, J. Geophys. Res. B, 1995, vol. 100, no. 7, pp. 12985–13005.

    Article  ADS  Google Scholar 

  48. Barabanov, V.L., Grinevskii, L.O., Belikov, V.M., and Ishankuliev, G.L., Migration of Crustal Earthquakes, Dynamic Processes in a Geophysical Medium, Moscow: Nauka, 1994, pp. 149–167.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. V. Makarov.

Additional information

Original Russian Text © P.V. Makarov, A.Yu. Peryshkin, 2016, published in Fizicheskaya Mezomekhanika, 2016, Vol. 19, No. 2, pp. 32-46.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Makarov, P.V., Peryshkin, A.Y. Slow motions as inelastic strain autowaves in ductile and brittle media. Phys Mesomech 20, 209–221 (2017). https://doi.org/10.1134/S1029959917020114

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1029959917020114

Keywords

Navigation