Instantaneous speed (IS) measurement is crucial in condition monitoring and real-time control of rotating machinery. Since the direct measurement of instantaneous rotating speed is not always available, the vibration measurement has been used for indirect estimation methods. In this paper, a novel indirect method is proposed to estimate the IS of rotating machinery. First, a frequency-shift synchrosqueezing transform is proposed to process the vibration signal to obtain the time–frequency (TF) representation. Second, the Viterbi algorithm is employed to extract the shifted instantaneous frequency (IF) from the TF representation. Finally, the extracted IF is used to recover the IF of the measured vibration signal. The IS of rotating machinery can be calculated from the estimated IF. The proposed method is validated with both numerical simulations and experiments. The results show that the proposed method could provide much higher frequency resolution, better TF concentration results, and more accurate IF estimation of the considered signal compared with the synchrosqueezing method. Furthermore, the proposed method was confirmed to be less sensitive to noise, especially for high-frequency components.

References

1.
Attanasio
,
A.
,
Ceretti
,
E.
,
Giardini
,
C.
, and
Cappellini
,
C.
,
2013
, “
Tool Wear in Cutting Operations: Experimental Analysis and Analytical Models
,”
ASME J. Manuf. Sci. Eng.
,
135
(
5
), p.
051012
.10.1115/1.4025010
2.
Hu
,
X.
,
Choi
,
K. S.
,
Sun
,
X.
, and
Golovashchenko
,
S. F.
,
2014
, “
Edge Fracture Prediction of Traditional and Advanced Trimming Processes for AA6111-T4 Sheets
,”
ASME J. Manuf. Sci. Eng.
,
136
(
2
), p.
021016
.10.1115/1.4026273
3.
Ma
,
L.
,
Melkote
,
S. N.
, and
Castle
,
J. B.
,
2013
, “
A Model-Based Computationally Efficient Method for On-Line Detection of Chatter in Milling
,”
ASME J. Manuf. Sci. Eng.
,
135
(
3
), p.
031007
.10.1115/1.4023716
4.
Ding
,
Y.
,
Zhu
,
L.
,
Zhang
,
X.
, and
Ding
,
H.
,
2013
, “
Stability Analysis of Milling Via the Differential Quadrature Method
,”
ASME J. Manuf. Sci. Eng.
,
135
(
4
), p.
044502
.10.1115/1.4024539
5.
Pawł
,
W
.,
2013
, “
Dynamic Model of Oscillation-Assisted Cylindrical Plunge Grinding With Chatter
,”
ASME J. Manuf. Sci. Eng.
,
135
(
5
), p.
051010
10.1115/1.4024819.
6.
Niu
,
L.
,
Cao
,
H.
,
He
,
Z.
, and
Li
,
Y.
,
2014
, “
Dynamic Modeling and Vibration Response Simulation for High Speed Rolling Ball Bearings With Localized Surface Defects in Raceways
,”
ASME J. Manuf. Sci. Eng.
,
136
(
4
), p.
041015
.10.1115/1.4027334
7.
Li
,
Y.
,
Cao
,
H.
,
Niu
,
L.
, and
Jin
,
X.
,
2014
, “
A General Method for the Dynamic Modeling of Ball Bearing-Rotor Systems
,”
ASME J. Manuf. Sci. Eng.
,
137
(
2
), p.
021016
10.1115/1.4029312.
8.
Lamraoui
,
M.
,
Thomas
,
M.
,
El Badaoui
,
M.
, and
Girardin
,
F.
,
2014
, “
Indicators for Monitoring Chatter in Milling Based on Instantaneous Angular Speeds
,”
Mech. Syst. Signal Process.
,
44
(
1–2
), pp.
72
85
.10.1016/j.ymssp.2013.05.002
9.
Gubran
,
A. A.
, and
Sinha
,
J. K.
,
2014
, “
Shaft Instantaneous Angular Speed for Blade Vibration in Rotating Machine
,”
Mech. Syst. Signal Process.
,
44
(
1–2
), pp.
47
59
.10.1016/j.ymssp.2013.02.005
10.
André
,
H.
,
Rémond
,
D.
, and
Bourdon
,
A.
,
2011
, “
On the Use of the Instantaneous Angular Speed Measurement in Non Stationary Mechanism Monitoring
,”
ASME
Paper No. DETC2011-4747010.1115/DETC2011-47470.
11.
Stander
,
C. J.
, and
Heyns
,
P. S.
,
2005
, “
Instantaneous Angular Speed Monitoring of Gearboxes Under Non-Cyclic Stationary Load Conditions
,”
Mech. Syst. Signal Process.
,
19
(
4
), pp.
817
835
.10.1016/j.ymssp.2004.10.006
12.
Renaudin
,
L.
,
Bonnardot
,
F.
,
Musy
,
O.
,
Doray
,
J.
, and
Rémond
,
D.
,
2010
, “
Natural Roller Bearing Fault Detection by Angular Measurement of True Instantaneous Angular Speed
,”
Mech. Syst. Signal Process.
,
24
(
7
), pp.
1998
2011
.10.1016/j.ymssp.2010.05.005
13.
Rémond
,
D.
,
Antoni
,
J.
, and
Randall
,
R. B.
,
2014
, “
Editorial for the Special Issue on Instantaneous Angular Speed (IAS) Processing and Angular Applications
,”
Mech. Syst. Signal Process.
,
44
(
1–2
), pp.
1
4
.10.1016/j.ymssp.2013.11.006
14.
Urbanek
,
J.
,
Barszcz
,
T.
, and
Antoni
,
J.
,
2013
, “
A Two-Step Procedure for Estimation of Instantaneous Rotational Speed With Large Fluctuations
,”
Mech. Syst. Signal Process.
,
38
(
1
), pp.
96
102
.10.1016/j.ymssp.2012.05.009
15.
Rodopoulos
,
K.
,
Yiakopoulos
,
C.
, and
Antoniadis
,
I.
,
2014
, “
A Parametric Approach for the Estimation of the Instantaneous Speed of Rotating Machinery
,”
Mech. Syst. Signal Process.
,
44
(
1–2
), pp.
31
46
.10.1016/j.ymssp.2013.02.011
16.
Li
,
Y.
,
Gu
,
F.
,
Harris
,
G.
,
Ball
,
A.
,
Bennett
,
N.
, and
Travis
,
K.
,
2005
, “
The Measurement of Instantaneous Angular Speed
,”
Mech. Syst. Signal Process.
,
19
(
4
), pp.
786
805
.10.1016/j.ymssp.2004.04.003
17.
André
,
H.
,
Girardin
,
F.
,
Bourdon
,
A.
,
Antoni
,
J.
, and
Rémond
,
D.
,
2014
, “
Precision of the IAS Monitoring System Based on the Elapsed Time Method in the Spectral Domain
,”
Mech. Syst. Signal Process.
,
44
(
1–2
), pp.
14
30
.10.1016/j.ymssp.2013.06.020
18.
Yu
,
S. D.
, and
Zhang
,
X.
,
2010
, “
A Data Processing Method for Determining Instantaneous Angular Speed and Acceleration of Crankshaft in an Aircraft Engine–Propeller System Using a Magnetic Encoder
,”
Mech. Syst. Signal Process.
,
24
(
4
), pp.
1032
1048
.10.1016/j.ymssp.2009.10.010
19.
Gubran
,
A. A.
, and
Sinha
,
J. K.
,
2014
, “
Comparison Between Long and Short Blade Vibration Using Shaft Instantaneous Angular Speed in Rotating Machine
,”
ASME
Paper No. GT2014-25904.10.1115/GT2014-25904
20.
Zimroz
,
R.
,
Urbanek
,
J.
,
Barszcz
,
T.
,
Bartelmus
,
W.
,
Millioz
,
F.
, and
Martin
,
N.
,
2011
, “
Measurement of Instantaneous Shaft Speed by Advanced Vibration Signal Processing-Application to Wind Turbine Gearbox
,”
Metrol. Meas. Syst.
,
18
(
4
), pp.
701
712
10.2478/v10178-011-0066-4.
21.
Zimroz
,
R.
,
Millioz
,
F.
, and
Martin
,
N.
,
2010
, “
A Procedure of Vibration Analysis From Planetary Gearbox Under Non-Stationary Cyclic Operations by Instantaneous Frequency Estimation in Time–Frequency Domain
,”
Seventh International Conference on Condition Monitoring and Machinery Failure Prevention Technologies
, CM 2010 and MFPT 2010, Stafford-upon-Avon, UK.
22.
Combet
,
F.
, and
Zimroz
,
R.
,
2009
, “
A New Method for the Estimation of the Instantaneous Speed Relative Fluctuation in a Vibration Signal Based on the Short Time Scale Transform
,”
Mech. Syst. Signal Process.
,
23
(
4
), pp.
1382
1397
.10.1016/j.ymssp.2008.07.001
23.
Zhao
,
M.
,
Lin
,
J.
,
Wang
,
X.
,
Lei
,
Y.
, and
Cao
,
J.
,
2013
, “
A Tacho-Less Order Tracking Technique for Large Speed Variations
,”
Mech. Syst. Signal Process.
,
40
(
1
), pp.
76
90
.10.1016/j.ymssp.2013.03.024
24.
Qin
,
S.
, and
Guo
,
Y.
,
2003
, “
Order Tracking Filtering Based on Instantaneous Frequency Estimation and Zero-Phase Distortion Digital Filtering
,”
ASME
Paper No. DETC2003/VIB-4848310.1115/DETC2003/VIB-48483.
25.
Bonnardot
,
F.
,
El Badaoui
,
M.
,
Randall
,
R. B.
,
Danière
,
J.
, and
Guillet
,
F.
,
2005
, “
Use of the Acceleration Signal of a Gearbox in Order to Perform Angular Resampling (With Limited Speed Fluctuation)
,”
Mech. Syst. Signal Process.
,
19
(
4
), pp.
766
785
.10.1016/j.ymssp.2004.05.001
26.
Borghesani
,
P.
,
Pennacchi
,
P.
,
Chatterton
,
S.
, and
Ricci
,
R.
,
2014
, “
The Velocity Synchronous Discrete Fourier Transform for Order Tracking in the Field of Rotating Machinery
,”
Mech. Syst. Signal Process.
,
44
(
1–2
), pp.
118
133
.10.1016/j.ymssp.2013.03.026
27.
Combet
,
F.
, and
Gelman
,
L.
,
2007
, “
An Automated Methodology for Performing Time Synchronous Averaging of a Gearbox Signal Without Speed Sensor
,”
Mech. Syst. Signal Process.
,
21
(
6
), pp.
2590
2606
.10.1016/j.ymssp.2006.12.006
28.
Coats
,
M. D.
,
Sawalhi
,
N.
, and
Randall
,
R.
,
2009
, “
Extraction of Tach Information From a Vibration Signal for Improved Synchronous Averaging
,”
Proceedings of Acoustics
.
29.
Urbanek
,
J.
,
Barszcz
,
T.
,
Sawalhi
,
N.
, and
Randall
,
R.
,
2011
, “
Comparison of Amplitude-Based and Phase-Based Methods for Speed Tracking in Application to Wind Turbines
,”
Metrol. Meas. Syst.
,
18
(
2
), pp.
295
304
10.2478/v10178-011-0011-z.
30.
Yiakopoulos
,
C.
,
Gryllias
,
K.
, and
Antoniadis
,
I.
,
2009
, “
Instantaneous Frequency Estimation in Rotating Machinery Using a Harmonic Signal Decomposition (HARD) Parametric Method
,”
ASME
Paper No. DETC2009-8734810.1115/DETC2009-87348.
31.
Daubechies
,
I.
,
Lu
,
J.
, and
Wu
,
H.-T.
,
2011
, “
Synchrosqueezed Wavelet Transforms: An Empirical Mode Decomposition-Like Tool
,”
Appl. Comput. Harmonic Anal.
,
30
(
2
), pp.
243
261
.10.1016/j.acha.2010.08.002
32.
Zhang
,
A.
,
Hu
,
F.
,
He
,
Q.
,
Shen
,
C.
,
Liu
,
F.
, and
Kong
,
F.
,
2014
, “
Doppler Shift Removal Based on Instantaneous Frequency Estimation for Wayside Fault Diagnosis of Train Bearings
,”
ASME J. Vib. Acoust.
,
136
(
2
), p.
021019
10.1115/1.4026431.
33.
Chandra Sekhar
,
S.
, and
Sreenivas
,
T. V.
,
2004
, “
Effect of Interpolation on PWVD Computation and Instantaneous Frequency Estimation
,”
Signal Process.
,
84
(
1
), pp.
107
116
.10.1016/j.sigpro.2003.07.015
34.
Djurović
,
I.
, and
Stanković
,
L.
,
2004
, “
An Algorithm for the Wigner Distribution Based Instantaneous Frequency Estimation in a High Noise Environment
,”
Signal Process.
,
84
(
3
), pp.
631
643
.10.1016/j.sigpro.2003.12.006
35.
Peng-Lang
,
S.
,
Zheng
,
B.
, and
Hong-Tao
,
S.
,
2008
, “
Nonparametric Detection of FM Signals Using Time–Frequency Ridge Energy
,”
IEEE Trans. Signal Process.
,
56
(
5
), pp.
1749
1760
.10.1109/TSP.2007.909322
36.
Peng
,
Z. K.
,
Meng
,
G.
,
Chu
,
F. L.
,
Lang
,
Z. Q.
,
Zhang
,
W. M.
, and
Yang
,
Y.
,
2011
, “
Polynomial Chirplet Transform With Application to Instantaneous Frequency Estimation
,”
IEEE Trans. Instrum. Meas.
,
60
(
9
), pp.
3222
3229
.10.1109/TIM.2011.2124770
37.
Kwok
,
H. K.
, and
Jones
,
D. L.
,
2000
, “
Improved Instantaneous Frequency Estimation Using an Adaptive Short-Time Fourier Transform
,”
IEEE Trans. Signal Process.
,
48
(
10
), pp.
2964
2972
.10.1109/78.869059
38.
Thakur
,
G.
,
Brevdo
,
E.
,
Fučkar
,
N. S.
, and
Wu
,
H.-T.
,
2013
, “
The Synchrosqueezing Algorithm for Time-Varying Spectral Analysis: Robustness Properties and New Paleoclimate Applications
,”
Signal Process.
,
93
(
5
), pp.
1079
1094
.10.1016/j.sigpro.2012.11.029
39.
Li
,
C.
, and
Liang
,
M.
,
2012
, “
A Generalized Synchrosqueezing Transform for Enhancing Signal Time–Frequency Representation
,”
Signal Process.
,
92
(
9
), pp.
2264
2274
.10.1016/j.sigpro.2012.02.019
40.
Li
,
C.
, and
Liang
,
M.
,
2012
, “
Time–Frequency Signal Analysis for Gearbox Fault Diagnosis Using a Generalized Synchrosqueezing Transform
,”
Mech. Syst. Signal Process.
,
26
, pp.
205
217
.10.1016/j.ymssp.2011.07.001
41.
Feng
,
Z.
,
Chen
,
X.
, and
Liang
,
M.
,
2015
, “
Iterative Generalized Synchrosqueezing Transform for Fault Diagnosis of Wind Turbine Planetary Gearbox Under Nonstationary Conditions
,”
Mech. Syst. Signal Process.
,
52–53
, pp.
360
375
10.1016/j.ymssp.2014.07.009.
42.
Wang
,
S.
,
Chen
,
X.
,
Cai
,
G.
,
Chen
,
B.
,
Li
,
X.
, and
He
,
Z.
,
2014
,
Matching Demodulation Transform and SynchroSqueezing in Time-Frequency Analysis
,
Institute of Electrical and Electronics Engineers
,
New York
.
43.
Djurović
,
I.
,
2011
, “
Viterbi Algorithm for Chirp-Rate and Instantaneous Frequency Estimation
,”
Signal Process.
,
91
(
5
), pp.
1308
1314
.10.1016/j.sigpro.2010.10.007
44.
Olhede
,
S.
, and
Walden
,
A.
,
2005
, “
A Generalized Demodulation Approach to Time-Frequency Projections for Multicomponent Signals
,”
Proc. R. Soc. A
,
461
(
2059
), pp.
2159
2179
.10.1098/rspa.2005.1455
45.
Brevdo
,
E.
, and
Wu
,
H.-T.
,
2011
, The Synchrosqueezing Toolbox, https://web.math.princeton.edu/∼ebrevdo/Synsq/
You do not currently have access to this content.