The drag of bodies of revolution at zero degree angle of attack in supercavitating flow has been calculated. The potential flow about the body and cavity is calculated using an axial distribution of source/sink elements and is coupled with laminar and turbulent boundary-layer solutions for the body. Excellent agreement for drag coefficient is demonstrated between theory and a water-tunnel experiment, also between theory and a high-speed water-entry experiment. Results show skin-friction drag is the dominant drag component for high-speed water entry or high-speed underwater travel.

This content is only available via PDF.
You do not currently have access to this content.