This work explores the impact of passive deformation on the hydrodynamic performance of cownose rays gliding at various angles of attack (AoA) and pectoral fin stiffness. We employ a partitioned fluid-structure coupling scheme to resolve the dynamic interaction between the fluid and structure. Specifically, the incompressible Navier–Stokes equations are solved through the finite volume method, while structural deformation is addressed via the finite element method. A co-simulation engine is utilized for communication and coordination between the fluid and structural solver. Furthermore, an implicit coupling scheme is implemented to ensure numerical stability. Our results demonstrate that passive deformation of the pectoral fin would stabilize the gliding motion with increased drag and lift but reduced pitching moment. The lift-to-drag ratio is improved slightly at any angle of attack, with the maximum increase reached at an AoA of ±7.5°. Pectoral fin stiffness can influence passive deformation significantly, and the minimal stiffness leads to the most evident impact on gliding lift enhancement and pitching moment reduction under the parameters considered in this work. This study may provide insight into the control strategy of optimal gliding angle of attack and the selection of material properties of flexible fins in the design of high-performance biomimetic underwater gliders.

1.
S.
Wood
,
T.
Allen
,
S.
Kuhn
, and
J.
Caldwell
,
The Development of an Autonomous Underwater Powered Glider for Deep-Sea Biological, Chemical and Physical Oceanography
(
IEEE
,
2007
).
2.
A.
Bender
,
D. M.
Steinberg
,
A. L.
Friedman
, and
S. B.
Williams
, “
Analysis of an autonomous underwater glider
,” in
Australasian Conference on Robotics and Automation
(
IEEE
,
2008
).
3.
J.
Li
,
P.
Wang
,
H.
Dong
,
X.
Wu
,
X.
Chen
, and
C.
Chen
, “
Shape optimisation of blended-wing-body underwater gliders based on free-form deformation
,”
Ships Offshore Struct.
15
,
227
(
2020
).
4.
Y.
Li
,
D.
Pan
,
Q.
Zhao
,
Z.
Ma
, and
X.
Wang
, “
Hydrodynamic performance of an autonomous underwater glider with a pair of bioinspired hydro wings–a numerical investigation
,”
Ocean Eng.
163
,
51
(
2018
).
5.
Y.
Zhu
,
Y.
Liu
,
L.
Zhang
,
Y.
Wang
,
W.
Niu
, and
C.
Huang
, “
Dynamic model and motion characteristics of an underwater glider with manta-inspired wings
,”
J. Bionic Eng.
19
(
1
),
1
15
(
2022
).
6.
L.
Ge
,
W.
Ma
,
S.
Yang
,
X.
Yu
,
T.
Sun
,
X.
Wang
,
S.
Fa
, and
Y.
Wang
, “
Design and analysis of wire-driven tail fin for bionic underwater glider
,”
Ocean Eng.
286
,
115460
(
2023
).
7.
J.
Deng
,
L.
Zhang
,
Z.
Liu
, and
X.
Mao
, “
Numerical prediction of aerodynamic performance for a flying fish during gliding flight
,”
Bioinspir. Biomim.
14
,
046009
(
2019
).
8.
M.
Maeda
,
N.
Harada
, and
H.
Tanaka
, “
Hydrodynamics of gliding penguin flipper suggests the adjustment of sweepback with swimming speeds
,” BioRxiv 2021.05.24.445327 (
2021
).
9.
W.-H.
Cai
,
J.-M.
Zhan
, and
Y.-Y.
Luo
, “
A study on the hydrodynamic performance of manta ray biomimetic glider under unconstrained six-DOF motion
,”
PLoS ONE
15
,
e0241677
(
2020
).
10.
P.
Gao
,
Q.
Huang
,
G.
Pan
,
Y.
Ma
, and
D.
Song
, “
Research on the hydrodynamic performance of double manta ray gliding in groups with variable attack angles
,”
Phys. Fluids
34
,
111908
(
2022
).
11.
J.-M.
Zhan
,
Y.-J.
Gong
, and
T.-Z.
Li
, “
Gliding locomotion of manta rays, killer whales and swordfish near the water surface
,”
Sci. Rep.
7
,
406
(
2017
).
12.
M. R.
Waszak
,
L. N.
Jenkins
, and
P.
Ifju
, “
Stability and control properties of an aeroelastic fixed wing micro aerial vehicle
” (
2001
).
13.
R.
Albertani
,
B.
Stanford
,
J.
Hubner
, and
P.
Ifju
, “
Characterization of flexible wing MAVs: Aeroelastic and propulsion effects on flying qualities
,” AIAA Paper No. 2005-6324 (
2005
).
14.
B.
Stanford
,
D.
Viieru
,
R.
Albertani
,
W.
Shyy
, and
P.
Ifju
, “
A numerical and experimental investigation of flexible micro air vehicle wing deformation
,” AIAA Paper No. 2006-440 (
2006
).
15.
A. M.
DeLuca
,
M. F.
Reeder
,
J. A.
Freeman
, and
M. V.
Ol
, “
Flexible-and rigid-wing micro air vehicle: Lift and drag comparison
,”
J. Aircr.
43
,
572
(
2006
).
16.
C.
Mertens
,
J. L. C.
Fernández
,
J.
Sodja
,
A.
Sciacchitano
, and
B. W.
van Oudheusden
, “
Integrated aeroelastic measurements of the periodic gust response of a highly flexible wing
” (
International Forum on Aeroelasticity and Structural Dynamics
,
2022
).
17.
C.
Mertens
,
J.
Sodja
,
A.
Sciacchitano
, and
B.
van Oudheusden
, “
Experimental aeroelastic characterization of a very flexible wing in steady and unsteady inflow
,” AIAA Paper No. 2022-1344 (
2022
).
18.
F. E.
Fish
and
G. V.
Lauder
, “
Passive and active flow control by swimming fishes and mammals
,”
Annu. Rev. Fluid Mech.
38
,
193
(
2006
).
19.
G. V.
Lauder
,
E. J.
Anderson
,
J.
Tangorra
, and
P. G.
Madden
, “
Fish biorobotics: Kinematics and hydrodynamics of self-propulsion
,”
J. Exp. Biol.
210
,
2767
(
2007
).
20.
D. N.
Beal
,
F. S.
Hover
,
M. S.
Triantafyllou
,
J. C.
Liao
, and
G. V.
Lauder
, “
Passive propulsion in vortex wakes
,”
J. Fluid Mech.
549
,
385
(
2006
).
21.
F.-B.
Tian
,
H.
Luo
,
L.
Zhu
,
J. C.
Liao
, and
X.-Y.
Lu
, “
An efficient immersed boundary-lattice Boltzmann method for the hydrodynamic interaction of elastic filaments
,”
J. Comput. Phys.
230
,
7266
(
2011
).
22.
Q.
Mao
,
Y.
Liu
, and
H. J.
Sung
, “
Drag reduction by flapping a flexible filament behind a stationary cylinder
,”
Phys. Fluids
34
,
087123
(
2022
).
23.
Q.
Mao
,
Y.
Liu
, and
H. J.
Sung
, “
Drag reduction by flapping a pair of flexible filaments behind a cylinder
,”
Phys. Fluids
35
,
033602
(
2023
).
24.
A.
Banerjee
,
P. S.
Gurugubelli
,
N.
Kumar
, and
R. K.
Jaiman
, “
Influence of flexible fins on vortex-induced load over a circular cylinder at low Reynolds number
,”
Phys. Fluids
33
,
113602
(
2021
).
25.
X.
Zhu
,
G.
He
, and
X.
Zhang
, “
Numerical study on hydrodynamic effect of flexibility in a self-propelled plunging foil
,”
Comput. Fluids
97
,
1
20
(
2014
).
26.
X.
Zhu
,
G.
He
, and
X.
Zhang
, “
How flexibility affects the wake symmetry properties of a self-propelled plunging foil
,”
J. Fluid Mech.
751
,
164
(
2014
).
27.
W.
Wang
,
H.
Huang
, and
X.-Y.
Lu
, “
Optimal chordwise stiffness distribution for self-propelled heaving flexible plates
,”
Phys. Fluids
32
,
111905
(
2020
).
28.
W.
Wang
,
H.
Huang
, and
X.-Y.
Lu
, “
Interplay of chordwise stiffness and shape on performance of self-propelled flexible flapping plate
,”
Phys. Fluids
33
,
091904
(
2021
).
29.
Y.
Luo
,
Q.
Xiao
,
G.
Shi
,
G.
Pan
, and
D.
Chen
, “
The effect of variable stiffness of tuna-like fish body and fin on swimming performance
,”
Bioinspir. Biomim.
16
,
016003
(
2020
).
30.
D.
Zhang
,
Q.-G.
Huang
,
G.
Pan
,
L.-M.
Yang
, and
W.-X.
Huang
, “
Vortex dynamics and hydrodynamic performance enhancement mechanism in batoid fish oscillatory swimming
,”
J. Fluid Mech.
930
,
A28
(
2022
).
31.
C. E.
Heine
,
Mechanics of Flapping Fin Locomotion in the Cownose Ray, Rhinoptera Bonasus (Elasmobranchii: Myliobatidae)
(
Duke University
,
1992
).
32.
L. J.
Macesic
and
A. P.
Summers
, “
Flexural stiffness and composition of the batoid propterygium as predictors of punting ability
,”
J. Exp. Biol.
215
,
2003
(
2012
).
33.
P.
Le Tallec
and
J.
Mouro
, “
Fluid structure interaction with large structural displacements
,”
Comput. Methods Appl. Mech. Eng.
190
,
3039
(
2001
).
34.
P.
Causin
,
J.-F.
Gerbeau
, and
F.
Nobile
, “
Added-mass effect in the design of partitioned algorithms for fluid–structure problems
,”
Comput. Methods Appl. Mech. Eng.
194
,
4506
(
2005
).
35.
C.
Förster
,
W. A.
Wall
, and
E.
Ramm
, “
Artificial added mass instabilities in sequential staggered coupling of nonlinear structures and incompressible viscous flows
,”
Comput. Methods Appl. Mech. Eng.
196
,
1278
(
2007
).
36.
E. H.
van Brummelen
, “
Added mass effects of compressible and incompressible flows in fluid-structure interaction
,”
J. Appl. Mech.
76
,
021206
(
2009
).
37.
M.
Schäfer
,
M.
Heck
, and
S.
Yigit
,
An Implicit Partitioned Method for the Numerical Simulation of Fluid-Structure Interaction
(
Springer
,
2006
).
38.
J.
Vierendeels
,
L.
Lanoye
,
J.
Degroote
, and
P.
Verdonck
, “
Implicit coupling of partitioned fluid–structure interaction problems with reduced order models
,”
Computers Struct.
85
,
970
(
2007
).
39.
S.
Krittian
,
U.
Janoske
,
H.
Oertel
, and
T.
Böhlke
, “
Partitioned fluid–solid coupling for cardiovascular blood flow: Left-ventricular fluid mechanics
,”
Ann. Biomed. Eng.
38
,
1426
(
2010
).
40.
X.
Chen
,
M.
Schäfer
, and
D.
Bothe
, “
Numerical modeling and investigation of viscoelastic fluid–structure interaction applying an implicit partitioned coupling algorithm
,”
J. Fluids Struct.
54
,
390
(
2015
).
41.
R.
Russo
,
S.
Blemker
,
F.
Fish
, and
H.
Bart-Smith
, “
Biomechanical model of batoid (skates and rays) pectoral fins predicts the influence of skeletal structure on fin kinematics: Implications for bio-inspired design
,”
Bioinspir. Biomim.
10
,
046002
(
2015
).
42.
L. J.
Rosenberger
, “
Pectoral fin locomotion in batoid fishes: Undulation versus oscillation
,”
J. Exp. Biol.
204
,
379
(
2001
).
43.
W.
Dettmer
and
D.
Perić
, “
A computational framework for fluid–structure interaction: Finite element formulation and applications
,”
Comput. Methods Appl. Mech. Eng.
195
,
5754
(
2006
).
44.
C.
Habchi
,
S.
Russeil
,
D.
Bougeard
,
J.-L.
Harion
,
T.
Lemenand
,
A.
Ghanem
,
D. D.
Valle
, and
H.
Peerhossaini
, “
Partitioned solver for strongly coupled fluid–structure interaction
,”
Comput. Fluids
71
,
306
(
2013
).
45.
H. G.
Matthies
and
J.
Steindorf
, “
Partitioned strong coupling algorithms for fluid–structure interaction
,”
Comput. Struct.
81
,
805
(
2003
).
46.
C.
Wood
,
A. J.
Gil
,
O.
Hassan
, and
J.
Bonet
, “
Partitioned block-Gauss–Seidel coupling for dynamic fluid–structure interaction
,”
Comput. Struct.
88
,
1367
(
2010
).
47.
Y.
Luo
,
Q.
Xiao
,
G.
Shi
,
L.
Wen
,
D.
Chen
, and
G.
Pan
, “
A fluid–structure interaction solver for the study on a passively deformed fish fin with non-uniformly distributed stiffness
,”
J. Fluids Struct.
92
,
102778
(
2020
).
48.
M.
Luhar
and
H. M.
Nepf
, “
Flow‐induced reconfiguration of buoyant and flexible aquatic vegetation
,”
Limnol. Oceanogr.
56
,
2003
(
2011
).
49.
F.-B.
Tian
,
H.
Dai
,
H.
Luo
,
J. F.
Doyle
, and
B.
Rousseau
, “
Fluid–structure interaction involving large deformations: 3D simulations and applications to biological systems
,”
J. Comput. Phys.
258
,
451
(
2014
).
50.
S.
Huang
,
R.
Li
, and
Q.
Li
, “
Numerical simulation on fluid-structure interaction of wind around super-tall building at high Reynolds number conditions
,”
Struct. Eng. Mech.
46
,
197
(
2013
).
You do not currently have access to this content.