Let Γ(H) be the boson Fock space over a finite dimensional Hilbert space H. It is shown that every Gaussian symmetry admits a Klauder–Bargmann integral representation in terms of coherent states. Furthermore, Gaussian states, Gaussian symmetries, and second quantization contractions belong to a weakly closed self-adjoint semigroup E2(H) of bounded operators in Γ(H). This yields a common parametrization for these operators. It is shown that the new parametrization for Gaussian states is a fruitful alternative to the customary parametrization by position–momentum mean vectors and covariance matrices. This leads to a rich harvest of corollaries: (i) every Gaussian state ρ admits a factorization ρ=Z1Z1, where Z1 is an element of E2(H) and has the form Z1=cΓ(P)expr=1nλrar+r,s=1nαrsaras on the dense linear manifold generated by all exponential vectors, where c is a positive scalar, Γ(P) is the second quantization of a positive contractive operator P in H, ar, 1 ≤ rn, are the annihilation operators corresponding to the n different modes in Γ(H), λrC, and [αrs] is a symmetric matrix in Mn(C); (ii) an explicit particle basis expansion of an arbitrary mean zero pure Gaussian state vector along with a density matrix formula for a general Gaussian state in terms of its E2(H)-parameters; (iii) a class of examples of pure n-mode Gaussian states that are completely entangled; (iv) tomography of an unknown Gaussian state in Γ(Cn) by the estimation of its E2(Cn) parameters using O(n2) measurements with a finite number of outcomes.

1.
K. R.
Parthasarathy
,
An Introduction to Quantum Stochastic Calculus
, Modern Birkhäuser Classics (
Birkhäuser/Springer Basel AG
,
Basel
,
1992
), p.
xii+290
, [2012 reprint of the 1992 original].
2.
K. R.
Parthasarathy
, “
What is a Gaussian state?
,”
Commun. Stoch. Anal.
4
,
143
160
(
2010
).
3.
A.
Serafini
,
Quantum Continuous Variables: A Primer of Theoretical Methods
(
CRC Press
,
2017
).
4.
J. R.
Klauder
, “
The action option and a Feynman quantization of spinor fields in terms of ordinary c-numbers
,”
Ann. Phys.
11
,
123
168
(
1960
).
5.
V.
Bargmann
, “
On a Hilbert space of analytic functions and an associated integral transform part I
,”
Commun. Pure Appl. Math.
14
,
187
214
(
1961
).
6.
R. J.
Glauber
, “
Photon correlations
,”
Phys. Rev. Lett.
10
,
84
86
(
1963
).
7.
R. J.
Glauber
, “
Coherent and incoherent states of the radiation field
,”
Phys. Rev.
131
,
2766
2788
(
1963
).
8.
E. C. G.
Sudarshan
, “
Equivalence of semiclassical and quantum mechanical descriptions of statistical light beams
,”
Phys. Rev. Lett.
10
,
277
279
(
1963
).
9.
J. R.
Klauder
and
E. C. G.
Sudarshan
,
Fundamentals of Quantum Optics
, The Mathematical Physics Monographs Series (
Benjamin
,
1968
), p.
279
.
10.
M. D.
Srinivas
and
E.
Wolf
, “
Some nonclassical features of phase-space representations of quantum mechanics
,”
Phys. Rev. D
11
,
1477
1485
(
1975
).
11.
G. B.
Folland
,
Harmonic Analysis in Phase Space
, Annals of Mathematics Studies Vol. 122 (
Princeton University Press
,
Princeton, NJ
,
1989
), p.
x+277
.
12.
K. R.
Parthasarathy
, “
The symmetry group of Gaussian states in L2(Rn)
,” in
Prokhorov and Contemporary Probability Theory
, Springer Proceedings in Mathematics and Statistics Vol. 33 (
Springer
,
Heidelberg
,
2013
), pp.
349
369
.
13.
B. V. R.
Bhat
,
T. C.
John
, and
R.
Srinivasan
, “
Infinite mode quantum Gaussian states
,”
Rev. Math. Phys.
31
,
1950030
(
2019
).
14.
W.
Feller
,
An Introduction to Probability Theory and Its Applications
(
Wiley
,
1968
), Vol. 1.
15.
L.-M.
Duan
,
G.
Giedke
,
J. I.
Cirac
, and
P.
Zoller
, “
Entanglement purification of Gaussian continuous variable quantum states
,”
Phys. Rev. Lett.
84
,
4002
4005
(
2000
).
16.
J.
Eisert
and
M. B.
Plenio
, “
Introduction to the basics of entanglement theory in continuous-variable systems
,”
Int. J. Quantum Inform.
01
,
479
506
(
2003
).
17.
K. K.
Sabapathy
,
J. S.
Ivan
, and
R.
Simon
, “
Robustness of non-Gaussian entanglement against noisy amplifier and attenuator environments
,”
Phys. Rev. Lett.
107
,
130501
(
2011
).
18.
Arvind
,
B.
Dutta
,
N.
Mukunda
, and
R.
Simon
, “
Two-mode quantum systems: Invariant classification of squeezing transformations and squeezed states
,”
Phys. Rev. A
52
,
1609
1620
(
1995
).
19.
M. D.
Reid
,
P. D.
Drummond
,
W. P.
Bowen
,
E. G.
Cavalcanti
,
P. K.
Lam
,
H. A.
Bachor
,
U. L.
Andersen
, and
G.
Leuchs
, “
Colloquium: The Einstein-Podolsky-Rosen paradox: From concepts to applications
,”
Rev. Mod. Phys.
81
,
1727
1751
(
2009
).
20.
A. I.
Lvovsky
, “
Squeezed light
,” in
Photonics
(
John Wiley & Sons, Ltd.
,
2015
), Chap. 5, pp.
121
163
, https://onlinelibrary.wiley.com/doi/pdf/10.1002/9781119009719.ch5.
21.
W.
Dür
and
J. I.
Cirac
, “
Classification of multiqubit mixed states: Separability and distillability properties
,”
Phys. Rev. A
61
,
042314
(
2000
).
22.
K. R.
Parthasarathy
, “
On the maximal dimension of a completely entangled subspace for finite level quantum systems
,”
Proc. Math. Sci.
114
,
365
374
(
2004
).
23.
B. V. R.
Bhat
, “
A completely entangled subspace of maximal dimension
,”
Int. J. Quantum Inform.
04
,
325
330
(
2006
).
24.
J.
Walgate
and
A. J.
Scott
, “
Generic local distinguishability and completely entangled subspaces
,”
J. Phys. A: Math. Theor.
41
,
375305
(
2008
).
25.
R. F.
Werner
and
M. M.
Wolf
, “
Bound entangled Gaussian states
,”
Phys. Rev. Lett.
86
,
3658
3661
(
2001
).
26.
R. A.
Horn
and
C. R.
Johnson
,
Matrix Analysis
, 2nd ed. (
Cambridge University Press
,
2012
).
27.
G.
Adesso
,
A.
Serafini
, and
F.
Illuminati
, “
Quantification and scaling of multipartite entanglement in continuous variable systems
,”
Phys. Rev. Lett.
93
,
220504
(
2004
).
28.
G.
Adesso
and
F.
Illuminati
, “
Strong monogamy of bipartite and genuine multipartite entanglement: The Gaussian case
,”
Phys. Rev. Lett.
99
,
150501
(
2007
).
29.
G.
Adesso
and
F.
Illuminati
, “
Genuine multipartite entanglement of symmetric Gaussian states: Strong monogamy, unitary localization, scaling behavior, and molecular sharing structure
,”
Phys. Rev. A
78
,
042310
(
2008
).
30.
P.
van Loock
and
A.
Furusawa
, “
Detecting genuine multipartite continuous-variable entanglement
,”
Phys. Rev. A
67
,
052315
(
2003
).
31.
A. R. U.
Devi
,
R.
Prabhu
, and
A. K.
Rajagopal
, “
Characterizing multiparticle entanglement in symmetric n-qubit states via negativity of covariance matrices
,”
Phys. Rev. Lett.
98
,
060501
(
2007
).
32.
K. R.
Parthasarathy
and
R.
Sengupta
, “
From particle counting to Gaussian tomography
,”
Infinite Dimen. Anal., Quantum Probab. Relat. Top.
18
,
1550023
(
2015
).
33.
R.
Simon
, “
Peres-Horodecki separability criterion for continuous variable systems
,”
Phys. Rev. Lett.
84
,
2726
2729
(
2000
).
34.
C.
Weedbrook
,
S.
Pirandola
,
R.
García-Patrón
,
N. J.
Cerf
,
T. C.
Ralph
,
J. H.
Shapiro
, and
S.
Lloyd
, “
Gaussian quantum information
,”
Rev. Mod. Phys.
84
,
621
669
(
2012
).
35.
X.
Wang
,
T.
Hiroshima
,
A.
Tomita
, and
M.
Hayashi
, “
Quantum information with Gaussian states
,”
Phys. Rep.
448
,
1
111
(
2007
).
You do not currently have access to this content.