Compound TiSe2 has received much attention among the transition metal chalcogenides because of its thrilling physical properties concerning atypical resistivity behavior, the emergence of charge density wave (CDW) state, induced superconductivity, etc. Here, we report the discovery of a new feature of TiSe2, namely, the observation of resistive switching in voltage biased point contacts (PCs) based on TiSe2 and its derivatives doped by S and Cu (TiSeS, CuxTiSe2). The switching occurs between a low resistive mainly “metallic-type” state and a high resistive “semiconducting-type” state when a bias voltage is applied (usually < 0.5 V), and reverse switching occurs when a voltage of opposite polarity is applied (usually < 0.5 V). The difference in resistance between these two states can reach up to two orders of magnitude at room temperature. The origin of this effect can be attributed to the variation of stoichiometry in the PC core due to the drift/displacement of Se/Ti vacancies under a high electric field. Additionally, we demonstrated that heating occurs in the PC core, which can facilitate the electric field-induced effect. At the same time, we did not find any evidence for CDW spectral features in our PC spectra for TiSe2. The observed resistive switching allows proposing TiSe2 and their derivatives as promising materials, e.g., for non-volatile resistive random access memory (ReRAM) engineering.

1.
J. A.
Wilson
, and
A. D.
Yoffe
, “
The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties
,”
Adv. Phys.
28
,
193
(
1969
).
2.
P.
Ajayan
,
P.
Kim
, and
K.
Banerjee
, “
Two-dimensional van der waals materials
,”
Phys. Today
69
, 38 (
2016
).
3.
J. A.
Benda
, “
Optical, electrical-transport, and heat-capacity studies of the solid solutions TixTa1–xSx2, ZrxTax1–x S2, and TixNb1–xSe2
,”
Phys. Rev. B
10
,
1409
(
1974
).
4.
F. J.
Di Salvo
,
D. E.
Moncton
, and
J. V.
Waszczak
, “
Electronic properties and superlattice formation in the semimetal TiSe2
,”
Phys. Rev. B
14
,
4321
(
1976
).
5.
S. H.
Huang
,
G. J.
Shu
,
W
e W
Pai
,
H. L.
Liu
, and
F. C.
Chou
, “
Tunable Se vacancy defects and the unconventional charge density wave in 1T–TiSe2−δ
,”
Phys. Rev. B
95
,
045310
(
2017
).
6.
Jie M.
Moya
,
C.-L.
Huang
,
Jse
Choe
,
Gl
Costin
,
Mt-hw S.
Foster
, and
E.
Morosan
, “
Effect of synthesis condi-tions on the electrical resistivity of TiSe2
,”
Phys. Rev. Mater.
3
,
084005
(
2019
).
7.
F. J.
Di Salvo
and
J. V.
Waszczak
, “
Transport properties and the phase transition in Ti1–xMxSe2 (M = Ta, V)
,”
Phys. Rev. B
17
,
3801
(
1978
).
8.
K. C.
Woo
,
F. C.
Brown
,
W. L.
McMillan
,
R. J.
Miller
,
M. J.
Schaffrnan
, and
M. P.
Sears
, “
Superlattice formation in tita-nium diselenide
,”
Phys. Rev. B
14
,
3242
(
1976
).
9.
Mthw D.
Watson
,
Aa M.
Beales
, and
Pii D. C.
King
, “
On the origin of the anomalous peak in the resistivity of TiSe2
,”
Phys. Rev. B
99
,
195142
(
2019
).
10.
M.
Spera
,
A.
Scarfato
,
Á.
Pásztor
,
E.
Giannini
,
D. R.
Bow-ler
, and
C.
Renner
, “
Insight into the charge density wave gap from contrast inversion in topographic STM images
,”
Phys. Rev. Lett.
125
,
267603
(
2020
).
11.
Yu. G.
Naidyuk
and
I. K.
Yanson
,
Point-Contact Spectrosco-py, Springer Series in Solid-State Sciences
, (
Springer
,
New York
,
2005
), Vol.
145
.
12.
Yu.
Naidyuk
,
O.
Kvitnitskaya
,
D.
Bashlakov
,
S.
Aswartham
,
I.
Morozov
,
I.
Chernyavskii
,
G.
Fuchs
,
S.-L.
Drechsler
,
R.
Hühne
,
K.
Nielsch
,
B.
Büchner
, and
D.
Efremov
, “
Surface superconductivity in the weyl semimetal MoTe2 detected by point contact spectroscopy
,”
2D Mater.
5
,
045014
(
2018
).
13.
Yu. G.
Naidyuk
,
D. L.
Bashlakov
,
O. E.
Kvitnitskaya
,
S.
Aswartham
,
I. V.
Morozov
,
I. O.
Chernyavskii
,
G.
Shipunov
,
G.
Fuchs
,
S.-L.
Drechsler
,
R.
Hühne
,
K.
Nielsch
,
B.
Büchner
, and
D. V.
Efremov
, “
Yanson point-contact spectroscopy of weyl semimetal WTe2
,”
2D Mater.
6
,
045012
(
2019
).
14.
Yu. G.
Naidyuk
,
D. L.
Bashlakov
,
O. E.
Kvitnitskaya
,
B. R.
Piening
,
G.
Shipunov
,
D. V.
Efremov
,
S.
Aswartham
, and
B.
Büchner
, “
Switchable domains in point contacts based on transition metal tellurides
,”
Phys. Rev. Mater.
5
,
084004
(
2021
).
15.
F.
Levy
, and
H.
Berger
, “
Single crystals of transition metal trichalcogenides,
J. Cryst. Growth
61
,
61
(
1983
).
16.
Y.
Shemerliuk
,
A.
Kuibarov
,
O.
Feia
,
M.
Behnami
,
H.
Reichlova
,
O.
Suvorov
,
S.
Selter
,
D. V.
Efremov
,
S.
Borisenko
,
B.
Büchner
, and
S.
Aswartham
,
Tuning charge density wave in TiSeS single crystals
, arXiv:2210.12799.
17.
B. I.
Verkin
,
I. K.
Yanson
,
I. O.
Kulik
,
O. I.
Shklyarevskii
,
A. A.
Lysykh
, and
Yu. G.
Naydyuk
, “
Singularities in d2V/dI2 dependences of point contacts between ferromagnetic metals
,”
Solid State Commun.
30
,
215
(
1979
).
18.
Yu. G.
Naidyuk
,
N. N.
Gribov
,
O. I.
Shklyarevskii
,
A. G. M.
Jansen
, and
I. K.
Yanson
, “
Thermoelectric effects and the asymmetry of the current-voltage characteristic of metallic point contacts
,” arXiv:1306.4189.
19.
J. -M.
Lopez-Castillo
,
A.
Amara
,
S.
Jandl
,
J.-P.
Jay-Gerin
,
C.
Ayache
, and
M. J.
Aubin
, “
Phonon-drag effect in TiSe2−xSx mixed compounds
,”
Phys. Rev. B
36
,
4249
(
1987
).
20.
G.
Wexler
, “
The size effect and the non-local boltzmann transport equation in orifice and disk geometry
,”
Proc. Phys. Soc.
89
,
927
(
1966
).
21.
G.
Wu
,
H. X.
Yang
,
L.
Zhao
,
X. G.
Luo
,
T.
Wu
,
G. Y.
Wang
, and
X. H.
Chen
, “
Transport properties of single-crystalline CuxTiSe2 (0.015 < x < 0.110)
,”
Phys. Rev. B
76
,
024513
(
2007
).
22.
Mte
Calandra
and
Facso
Mauri
, “
Charge-density wave and superconducting dome in TiSe2 from electron-phonon interaction
,”
Phys. Rev. Lett.
106
,
196406
(
2011
).
23.
C.
Ayache
and
M.
Nuñez-Regueiro
, “
Basal thermal conductivity of TiSe2
,”
J. Phys. Colloques
42
,
C6-338
(
1981
).
24.
R.
Waser
,
R.
Dittmann
,
G.
Staikov
, and
K.
Szot
, “
Redox-based resistive switching memories – nanoionic mechanisms, prospects, and challenges
,”
Adv. Mater.
21
,
2632
(
2009
).
25.
Vnd K.
Sangwan
and
Mr C.
Hersam
, “
Neuromorphic nanoelectronic materials
,”
Nat. Nanotechnol.
15
,
517
(
2007
).
You do not currently have access to this content.