An analysis of heat transfer in non-uniformly heated corrugated slots has been carried out. A sinusoidal corrugation is placed at the lower plate that is exposed to heating consisting of uniform and sinusoidal components, while the upper smooth plate is kept isothermal. The phase difference ΩTL describes the shift between the heating and geometric non-uniformities. The analysis is limited to heating conditions that do not give rise to secondary motions. Depending on ΩTL, the conductive heat flow is directed either upwards, or downwards, or is eliminated. Its magnitude is smallest for the long-wavelength systems and largest for the short-wavelength systems, and it increases proportionally to the corrugation amplitude and heating intensity. The same heating creates horizontal temperature gradients that give rise to convection whose form depends on ΩTL. Convection consists of counter-rotating rolls with the size dictated by the system wavelength when the hot spots (points of maximum temperature) overlap either with the corrugation tips or with the corrugation bottoms. Thermal drift forms for all other values of ΩTL. The convective heat flow is always directed upwards, and it is the largest in systems with wavelengths comparable to the slot height. The magnitude of the overall heat flow increases proportionally to the heating intensity when conductive effects dominate and proportionally to the second power of the heating intensity when convection dominates. It also increases proportionally to the corrugation amplitude. The system characteristics are dictated by convection when the relative position of the heating and corrugation patterns eliminates conduction. Addition of the uniform heating component amplifies the above processes, while uniform cooling reduces them. The processes described above are qualitatively similar for all Prandtl numbers of practical interest with the magnitude of the convective heat flow increasing with Pr.

1.
H.
Bénard
, “
Les tourbillons cellulaires dans une nappe liquide
,”
Rev. Gen. Sci. Pures Appl.
11
,
1261
1271
(
1900
).
2.
Lord
Rayleigh
, “
On convection currents in a horizontal layer of fluid, when the higher temperature is on the under side
,”
Philos. Mag. Ser. 6
32
,
529
546
(
1916
).
3.
F. H.
Busse
and
R. M.
Clever
, “
Instabilities of convection rolls in a fluid of moderate Prandtl number
,”
J. Fluid Mech.
91
,
319
335
(
1979
).
4.
R. M.
Clever
and
F. H.
Busse
, “
Transition to time-dependent convection
,”
J. Fluid Mech.
65
,
625
645
(
1974
).
5.
E.
Bodenschatz
,
W.
Pesch
, and
G.
Ahlers
, “
Recent developments in Rayleigh–Bénard convection
,”
Annu. Rev. Fluid Mech.
32
,
709
778
(
2000
).
6.
G.
Ahlers
,
S.
Grossmann
, and
D.
Lohse
, “
Heat transfer and large scale dynamics in turbulent Rayleigh–Bénard convection
,”
Rev. Mod. Phys.
81
,
503
537
(
2009
).
7.
D.
Lohse
and
K. Q.
Xia
, “
Small-scale properties of turbulent Rayleigh–Bénard convection
,”
Annu. Rev. Fluid Mech.
42
,
335
364
(
2010
).
8.
F.
Chilla
and
J.
Schumacher
, “
New perspectives in turbulent Rayleigh–Bénard convection
,”
Eur. Phys. J. E
35
,
58
82
(
2012
).
9.
P.
Hassanzadeh
,
G. P.
Chini
, and
C. R.
Doering
, “
Wall to wall optimal transport
,”
J. Fluid Mech.
751
,
627
662
(
2014
).
10.
T.
Maxworthy
, “
Convection into domains with open boundaries
,”
Annu. Rev. Fluid Mech.
29
,
327
371
(
1997
).
11.
G. O.
Hughes
and
R. W.
Griffiths
, “
Horizontal convection
,”
Ann. Rev. Fluid Mech.
40
,
185
208
(
2008
).
12.
J. H.
Siggers
,
R. R.
Kerswell
, and
N. J.
Balmforth
, “
Bounds on horizontal convection
,”
J. Fluid Mech.
517
,
55
70
(
2004
).
13.
K. B.
Winters
and
W. R.
Young
, “
Available potential energy and buoyancy variance in horizontal convection
,”
J. Fluid Mech.
629
,
221
230
(
2009
).
14.
A.
Lenardic
,
L.
Moresi
,
A. M.
Jellinek
, and
M.
Manga
, “
Continental insulation, mantle cooling, and the surface area of oceans and continents
,”
Earth Planet. Sci. Lett.
234
,
317
333
(
2005
).
15.
S.
Marcq
and
J.
Weiss
, “
Influence of sea ice lead-width distribution on turbulent heat transfer between the ocean and the atmosphere
,”
Cryosphere
6
,
143
156
(
2012
).
16.
O.
Ripesi
,
L.
Biferale
,
M.
Sbragaglia
, and
A.
Wirth
, “
Natural convection with mixed insulating and conducting boundary conditions: Low-and high-Rayleigh-number regimes
,”
J. Fluid Mech.
742
,
636
663
(
2014
).
17.
A. M.
Rizwam
,
L. Y. C.
Dennis
, and
C.
Liu
, “
A review on the generation, determination and mitigation of Urban Heat Island
,”
J. Environ. Sci.
20
,
120
128
(
2008
).
18.
M. A.
Finney
,
J. D.
Cohen
,
S. S.
McAllister
, and
W. M.
Jolly
, “
On the need for a theory of wildland fire spread
,”
Int. J. Wildland Fire
22
,
25
(
2012
).
19.
M. Z.
Hossain
and
J. M.
Floryan
, “
Heat transfer due to natural convection in a periodically heated slot
,”
J. Heat Transfer
135
,
022503
(
2013
).
20.
M. Z.
Hossain
and
J. M.
Floryan
, “
Instabilities of natural convection in a periodically heated layer
,”
J. Fluid Mech.
733
,
33
67
(
2013
).
21.
A.
Asgarian
,
M. Z.
Hossain
, and
J. M.
Floryan
, “
Rayleigh-Bénard convection driven by a long wavelength heating
,”
Theor. Comput. Fluid Dyn.
30
,
313
337
(
2016
).
22.
M. Z.
Hossain
and
J. M.
Floryan
, “
Natural convection in a fluid layer periodically heated from above
,”
Phys. Rev. E
90
,
023015
(
2014
).
23.
M. Z.
Hossain
and
J. M.
Floryan
, “
Natural convection in a horizontal fluid layer periodically heated from above and below
,”
Phys. Rev. E
92
,
023015
(
2015
).
24.
M. Z.
Hossain
and
J. M.
Floryan
, “
Mixed convection in a periodically heated channel
,”
J. Fluid Mech.
768
,
51
90
(
2015
).
25.
M. Z.
Hossain
,
D.
Floryan
, and
J. M.
Floryan
, “
Drag reduction due to spatial thermal modulations
,”
J. Fluid Mech.
713
,
398
419
(
2012
).
26.
D.
Floryan
and
J. M.
Floryan
, “
Drag reduction in heated channels
,”
J. Fluid Mech.
765
,
353
395
(
2015
).
27.
M. Z.
Hossain
and
J. M.
Floryan
, “
Drag reduction in a thermally modulated channel
,”
J. Fluid Mech.
791
,
122
153
(
2016
).
28.
M. Z.
Hossain
and
J. M.
Floryan
, “
Natural convection under sub-critical conditions in the presence of heating non-uniformities
,”
Int. J. Heat Mass Transfer
114
,
8
19
(
2017
).
29.
S.
Weiss
,
G.
Seiden
, and
E.
Bodenschatz
, “
Pattern formation in spatially forced thermal convection
,”
New J. Phys.
14
,
053010
(
2012
).
30.
J. H.
McCoy
,
W.
Brunner
,
W.
Pesch
, and
E.
Bodenschatz
, “
Self-organization of topological defects due to applied constraints
,”
Phys. Rev. Lett.
101
,
254102
(
2008
).
31.
S.
Toppaladoddi
,
S.
Succi
, and
J. S.
Wettlaufer
, “
Tailoring boundary geometry to optimize heat transport in turbulent convection
,”
Europhys. Lett.
111
,
44005
(
2015
).
32.
D.
Goluskin
and
C. R.
Doering
, “
Bounds for convection between rough boundaries
,”
J. Fluid Mech.
804
,
370
386
(
2016
).
33.
A.
Abtahi
and
J. M.
Floryan
, “
Natural convection in a corrugated slot
,”
J. Fluid Mech.
815
,
537
569
(
2017
).
34.
A.
Abtahi
and
J. M.
Floryan
, “
Natural convection and thermal drift
,”
J. Fluid Mech.
826
,
553
(
2017
).
35.
A.
Abtahi
,
M. Z.
Hossain
, and
J. M.
Floryan
, “
Spectrally accurate algorithm for analysis of convection in corrugated conduits
,”
Comput. Math. Appl.
72
,
2636
2659
(
2016
).
36.
S. Z.
Husain
and
J. M.
Floryan
, “
Spectrally-accurate algorithm for moving boundary problems for the Navier-Stokes equations
,”
J. Comput. Phys.
229
,
2287
2313
(
2010
).
37.
S. Z.
Husain
and
J. M.
Floryan
, “
Immersed boundary conditions method for unsteady flow problems described by the Laplace operator
,”
Int. J. Numer. Methods Fluids
56
,
1765
1786
(
2007
).
38.
S. Z.
Husain
and
J. M.
Floryan
, “
Implicit spectrally-accurate method for moving boundary problems using immersed boundary conditions concept
,”
J. Comput. Phys.
227
,
4459
4477
(
2008
).
You do not currently have access to this content.