In this paper, we present a numerical study on the thermocapillary migration of drops. The Navier–Stokes equations coupled with the energy conservation equation are solved by the finite-difference front-tracking scheme. The axisymmetric model is adopted in our simulations, and the drops are assumed to be perfectly spherical and nondeformable. The benchmark simulation starts from the classical initial condition with a uniform temperature gradient. The detailed discussions and physical explanations of migration phenomena are presented for the different values of (1) the Marangoni numbers and Reynolds numbers of continuous phases and drops and (2) the ratios of drop densities and specific heats to those of continuous phases. It is found that fairly large Marangoni numbers may lead to fluctuations in drop velocities at the beginning part of simulations. Finally, we also discuss the influence of initial conditions on the thermocapillary migrations.

1.
G. K.
Batchelor
,
An Introduction to Fluid Dynamics
(
Cambridge
,
New York
,
1990
).
2.
N. O.
Young
,
J. S.
Goldstein
, and
M. J.
Block
, “
The motion of bubbles in a vertical temperature gradient
,”
J. Fluid Mech.
6
,
350
(
1959
).
3.
R. S.
Subramanian
, “
Slow migration of a gas bubble in a thermal gradient
,”
AIChE J.
27
,
646
(
1981
).
4.
R. S.
Subramanian
, “
Thermocapillary migration of bubbles and droplets
,”
Adv. Space Res.
3
,
145
(
1983
).
5.
R.
Balasubramaniam
and
R. S.
Subramanian
, “
Thermocapillary bubble migration thermal boundary layers for large Marangoni numbers
,”
Int. J. Multiphase Flow
22
,
593
(
1996
).
6.
R.
Balasubramaniam
and
R. S.
Subramanian
, “
The migration of a drop in a uniform temperature gradient at large Marangoni numbers
,”
Phys. Fluids
12
,
733
(
2000
).
7.
M.
Hähnel
,
V.
Delitzsch
, and
H.
Eckelmann
, “
The motion of droplets in a vertical temperature gradient
,”
Phys. Fluids A
1
,
1460
(
1989
).
8.
N.
Rashidnia
and
R.
Balasubramaniam
, “
Thermocapillary migration of liquid droplets in a temperature gradient in a density matched system
,”
Exp. Fluids
11
,
167
(
1991
).
9.
Y. S.
Chen
,
Y. L.
Lu
,
Y. M.
Yang
, and
J. R.
Maa
, “
Surfactant effects on the motion of a droplet in thermocapillary migration
,”
Indian J. Pure Appl. Math.
23
,
325
(
1997
).
10.
J. C.
Xie
,
H.
Lin
,
J. H.
Han
,
X. Q.
Dong
,
W. R.
Hu
,
A.
Hirata
, and
M.
Sakurai
, “
Experimental investigation on Marangoni drop migrations using drop shaft facility
,”
Int. J. Heat Mass Transfer
41
,
2077
(
1998
).
11.
J. C.
Xie
,
H.
Lin
,
P.
Zhang
,
F.
Liu
, and
W. R.
Hu
, “
Experimental investigation on thermocapillary drop migration at large Marangoni number in reduced gravity
,”
J. Colloid Interface Sci.
285
,
737
(
2005
).
12.
J.
Szymczyk
and
J.
Siekmann
, “
Numerical calculation of the thermocapillary motion of a bubble under microgravity
,”
Chem. Eng. Commun.
69
,
129
(
1988
).
13.
N.
Shankar
and
R. S.
Subramanian
, “
The stokes motion of a gas bubble due to interfacial tension gradients at low to moderate Marangoni numbers
,”
J. Colloid Interface Sci.
123
,
512
(
1988
).
14.
R.
Balasubramaniam
and
J. E.
Lavery
, “
Numerical simulation of thermocapillary bubble migration under microgravity for large Reynolds and Marangoni numbers
,”
Numer. Heat Transfer, Part A
16
,
175
(
1989
).
15.
X. J.
Ma
,
R.
Balasubramaniam
, and
R. S.
Subramanian
, “
Numerical simulation of thermocapillary drop motion with internal circulation
,”
Numer. Heat Transfer, Part A
35
,
291
(
1999
).
16.
H.
Haj-Hariri
,
Q.
Shi
, and
A.
Borhan
, “
Thermocapillary motion of deformable drops at finite Reynolds and Marangoni numbers
,”
Phys. Fluids
9
,
845
(
1997
).
17.
S.
Nas
and
G.
Tryggvason
, “
Thermocapillary interaction of two bubbles or drops
,”
Int. J. Multiphase Flow
29
,
1117
(
2003
).
18.
S.
Nas
,
M.
Muradoglu
, and
G.
Tryggvason
, “
Pattern formation of drops in thermocapillary migration
,”
Int. J. Heat Mass Transfer
49
,
2265
(
2006
).
19.
R.
Balasubramaniam
,
C. E.
Lacy
,
G.
Woniak
, and
R. S.
Subramanian
, “
Thermocapillary migration of bubbles and drops at moderate values of the Marangoni number in reduced gravity
,”
Phys. Fluids
8
,
872
(
1996
).
20.
P. H.
Hadland
,
R.
Balasubramaniam
,
G.
Wozniak
, and
R. S.
Subramanian
, “
Thermocapillary migration of bubbles and drops at moderate to large Marangoni number and moderate Reynolds number in reduced gravity
,”
Exp. Fluids
26
,
24
(
1999
).
21.
R. B.
Bird
,
W. E.
Stewart
, and
E. N.
Lightfoot
,
Transport Phenomena
(
Wiley
,
New York
,
2002
).
22.
L. G.
Leal
,
Laminar Flow and Convective Transport Processes
(
Butterworth-Heinemann
,
Boston
,
1992
).
23.
P.
Gao
,
Z. H.
Yin
, and
W. R.
Hu
, “
Thermocapillary motion of droplets at large Marangoni numbers
,”
Adv. Space Res.
41
,
2101
(
2008
).
24.
S. O.
Unverdi
and
G.
Tryggvason
, “
A front-tracking method for viscous incompressible flows
,”
J. Comput. Phys.
100
,
25
(
1992
).
25.
G.
Tryggvason
,
B.
Bunner
,
A.
Esmaeeli
,
D.
Juric
,
N.
Al-Rawahi
,
W.
Tauber
,
J.
Han
,
S.
Nas
, and
Y.-J.
Jan
, “
A front-tracking method for the computations of multiphase flow
,”
J. Comput. Phys.
196
,
708
(
2001
).
26.
C. S.
Peskin
, “
Numerical analysis of blood flow in the heart
,”
J. Comput. Phys.
25
,
220
(
1977
).
27.
D. L. R.
Oliver
and
K. J.
DeWitt
, “
Transient motion of a gas bubble in a thermal gradient in low gravity
,”
J. Colloid Interface Sci.
164
,
263
(
1994
).
28.
M. D.
Levan
, “
Motion of a droplet with a Newtonian interface
,”
J. Colloid Interface Sci.
83
,
11
(
1981
).
29.
S. W. J.
Welch
, “
Transient thermocapillary migration of deformable bubbles
,”
J. Colloid Interface Sci.
208
,
500
(
1998
).
You do not currently have access to this content.