Transitional round jets at Mach number M=0.9, with identical initial conditions except for the diameter, yielding Reynolds numbers over the range 1.7×103ReD4×105, are computed by large eddy simulation (LES) using explicit selective/high-order filtering. The effects of the Reynolds number on the jet flows are first presented. As the Reynolds number decreases, the jets develop more slowly upstream from the end of the potential core, but more rapidly downstream. At lower Reynolds numbers, the decay of the centerline velocity and the jet spreading are indeed faster, and the turbulence intensities are higher after the potential core, in agreement with data of the literature. The integral length scales are also significantly larger. The results suggest moreover that the jet self-similar region is reached at shorter axial distances at lower Reynolds numbers. The influence of the Reynolds number on the energy-dissipation mechanisms involved in the LES, namely molecular viscosity and explicit filtering, is secondly investigated. At high Reynolds number, energy dissipation is mainly ensured by the explicit filtering, through the smaller scales discretized. As the Reynolds number decreases, the contribution of molecular viscosity increases and becomes predominant. Molecular viscosity is also shown to affect a large range of turbulent scales with a dissipation peak observed around the Taylor length scale.

1.
W. G.
Hill
 Jr.
,
R. C.
Jenkins
, and
B. L.
Gilbert
, “
Effects of the initial boundary-layer state on turbulent jet mixing
,”
AIAA J.
14
,
1513
(
1976
).
2.
J. C.
Lau
, “
Effects of exit Mach number and temperature on mean-flow and turbulence characteristics in round jets
,”
J. Fluid Mech.
105
,
193
(
1981
).
3.
K. B. M. Q.
Zaman
, “
Asymptotic spreading rate of initially compressible jets-experiment and analysis
,”
Phys. Fluids
10
,
2652
(
1998
).
4.
T. G.
Malmström
,
A. T.
Kirkpatrick
,
B.
Christensen
, and
K. D.
Knappmiller
, “
Centreline velocity decay measurements in low-velocity axisymmetric jets
,”
J. Fluid Mech.
346
,
363
(
1997
).
5.
E.
Ferdman
,
M. V.
Ötügen
, and
S.
Kim
, “
Effect of initial velocity profile on the development of round jet
,”
J. Power Sources
16
,
676
(
2000
).
6.
G.
Raman
,
E. J.
Rice
, and
E.
Reshotko
, “
Mode spectra of natural disturbances in a circular jet and the effect of acoustic forcing
,”
Exp. Fluids
17
,
415
(
1994
).
7.
R. A.
Antonia
and
Q.
Zhao
, “
Effect of initial conditions on a circular jet
,”
Exp. Fluids
31
,
319
(
2001
).
8.
G.
Xu
and
R. A.
Antonia
, “
Effects of different initial conditions on a turbulent free jet
,”
Exp. Fluids
33
,
677
(
2002
).
9.
K. B. M. Q.
Zaman
, “
Effect of initial condition on subsonic jet noise
,”
AIAA J.
23
,
1370
(
1985
).
10.
D. K.
McLaughlin
,
G. L.
Morrison
and
T. R.
Troutt
, “
Reynolds number dependence in supersonic jet noise
,”
AIAA J.
15
,
526
(
1977
).
11.
J. L.
Stromberg
,
D. K.
McLaughlin
, and
T. R.
Troutt
, “
Flow field and acoustic properties of a Mach number 0.9 jet at a low Reynolds number
,”
J. Sound Vib.
72
,
159
(
1980
).
12.
A.
Michalke
, “
Survey on jet instability theory
,” Progress in Aerospace Sciences 21,
159
(
1984
).
13.
G. P.
Lemieux
and
P. H.
Oosthuizen
, “
Experimental study of the behavior of plane turbulent jets at low Reynolds numbers
,”
AIAA J.
23
,
1845
(
1985
).
14.
I.
Namer
and
M. V.
Ötügen
, “
Velocity measurements in a plane turbulent air jet at moderate Reynolds numbers
,”
Exp. Fluids
6
,
387
(
1988
).
15.
S. J.
Kwon
and
I. W.
Seo
, “
Reynolds number effects on the behavior of a non-buoyant round jet
,”
Exp. Fluids
38
,
801
(
2005
).
16.
T. H.
Weisgraber
and
D.
Liepmann
, “
Turbulent structure during transition to self-similarity in a round jet
,”
Exp. Fluids
14
,
210
(
1998
).
17.
K. B. M. Q.
Zaman
, “
Far-field noise of a subsonic jet under controlled excitation
,”
J. Fluid Mech.
152
,
83
(
1985
).
18.
I.
Wygnanski
and
H.
Fiedler
, “
Some measurements in the self-preserving jet
,”
J. Fluid Mech.
38
,
577
(
1969
).
19.
J. C.
Lau
,
P. J.
Morris
, and
M. J.
Fisher
, “
Measurements in subsonic and supersonic free jets using a laser velocimeter
,”
J. Fluid Mech.
93
,
1
(
1979
).
20.
N. R.
Panchapakesan
and
J. L.
Lumley
, “
Turbulence measurements in axisymmetric jets of air and helium. Part I. Air jet
,”
J. Fluid Mech.
246
,
197
(
1993
).
21.
H. J.
Hussein
,
S. P.
Capp
, and
W. K.
George
, “
Velocity measurements in a high-Reynolds-number, momentum-conserving, axisymmetric, turbulent jet
,”
J. Fluid Mech.
258
,
31
(
1994
).
22.
V. H.
Arakeri
,
A.
Krothapalli
,
V.
Siddavaram
,
M. B.
Alkislar
, and
L.
Lourenco
, “
On the use of microjets to suppress turbulence in a Mach 0.9 axisymmetric jet
,”
J. Fluid Mech.
490
,
75
(
2003
).
23.
B. J.
Boersma
,
G.
Brethouwer
, and
F. T. M.
Nieuwstadt
, “
A numerical simulation on the effect of the inflow conditions on the self-similar region of a round jet
,”
Phys. Fluids
10
,
899
(
1998
).
24.
S. A.
Stanley
and
S.
Sarkar
, “
Influence of nozzle conditions and discrete forcing on turbulent planar jets
,”
AIAA J.
38
,
1615
(
2000
).
25.
C.
Bogey
and
C.
Bailly
, “
Effects of inflow conditions and forcing on subsonic jet flows and noise
,”
AIAA J.
43
,
1000
(
2005
).
26.
M.
Klein
,
A.
Sadiki
, and
J.
Janicka
, “
Investigation of the influence of the Reynolds number on a plane jet using direct numerical simulation
,”
Int. J. Heat Fluid Flow
24
,
785
(
2003
).
27.
J. A.
Domaradzki
and
P. P.
Yee
, “
The subgrid-scale estimation model for high Reynolds number turbulence
,”
Phys. Fluids
12
,
193
(
2000
).
28.
C.
Bogey
and
C.
Bailly
, “
Decrease of the effective Reynolds number with eddy-viscosity subgrid-scale modeling
,”
AIAA J.
43
,
437
(
2005
).
29.
C.
Bogey
and
C.
Bailly
, “
Large eddy simulations of round free jets using explicit filtering with/without dynamic Smagorinsky model
,” Int. J. Heat and Fluid Flow (to be published);
see also in
Proceedings of Turbulence and Shear Flow Phenomena-4
,
2005
, Vol.
2
, p.
817
.
30.
C.
Bogey
and
C.
Bailly
, “
A family of low dispersive and low dissipative explicit schemes for flow and noise computations
,”
J. Comput. Phys.
194
,
194
(
2004
).
31.
J. B.
Freund
, “
Noise sources in a low-Reynolds-number turbulent jet at Mach 0.9
,”
J. Fluid Mech.
438
,
277
(
2001
).
32.
C.
Bogey
and
C.
Bailly
, “
Computation of a high Reynolds number jet and its radiated noise using LES based on explicit filtering
,” Computers and Fluids (to be published).
33.
C.
Bogey
and
C.
Bailly
, “
Investigation of downstream and sideline subsonic jet noise using Large Eddy Simulation
,”
Theor. Comput. Fluid Dyn.
20
,
23
(
2006
).
34.
B.
Vreman
,
B.
Geurts
, and
H.
Kuerten
, “
Subgrid-modelling in LES of compressible flow
,”
Appl. Sci. Res.
54
,
191
(
1995
).
35.
D. H.
Porter
,
P. R.
Woodwrad
, and
A.
Pouquet
, “
Inertial range structures in decaying compressible turbulent flows
,”
Phys. Fluids
10
,
237
(
1998
).
36.
P.
Schlatter
,
S.
Stolz
, and
L.
Kleiser
, “
LES of transitional flows using the approximate deconvolution model
,”
Int. J. Heat Fluid Flow
25
,
549
(
2004
).
37.
M. R.
Visbal
and
D. P.
Rizzetta
, “
Large-eddy simulation on curvilinear grids using compact differencing and filtering schemes
,”
J. Fluids Eng.
124
,
836
(
2002
).
38.
D. P.
Rizzetta
,
M. R.
Visbal
, and
G. A.
Blaisdell
, “
A time-implicit high-order compact differencing and filtering scheme for large-eddy simulation
,”
Int. J. Numer. Methods Fluids
42
,
665
(
2003
).
39.
J.
Mathew
,
R.
Lechner
,
H.
Foysi
,
J.
Sesterhenn
, and
R.
Friedrich
, “
An explicit filtering method for large eddy simulation of compressible flows
,”
Phys. Fluids
15
,
2279
(
2003
).
40.
O.
Marsden
,
C.
Bogey
, and
C.
Bailly
, “
Noise radiated by a high-Reynolds-number 3-D airfoil
,”
Proceedings of 11th AIAA/CEAS Aeroacoustics Conference
, Monterey, CA,
23–25 May 2005
, AIAA Paper 2005–2817.
41.
C.
Bailly
and
C.
Bogey
, “
Current understanding of jet noise-generation mechanisms from compressible large-eddy-simulations
,”
Proceedings of Direct and Large-Eddy Simulation-6
, Poitiers, France,
12–14 September 2005
.
42.
S.
Stolz
,
N. A.
Adams
, and
L.
Kleiser
, “
An approximate deconvolution model for large-eddy simulation with application to incompressible wall-bounded flows
,”
Phys. Fluids
13
,
997
(
2001
).
43.
C.
Bogey
and
C.
Bailly
, “
Computation of the self-similarity region of a turbulent round jet using large eddy simulation
,”
Proceedings of Direct and Large-Eddy Simulation-6
, Poitiers, France,
12–14 September 2005
.
44.
C.
Bogey
,
C.
Bailly
, and
D.
Juvé
, “
Noise investigation of a high subsonic, moderate Reynolds number jet using a compressible LES
,”
Theor. Comput. Fluid Dyn.
16
,
273
(
2003
).
45.
C.
Bogey
and
C.
Bailly
, “
Three-dimensional non reflective boundary conditions for acoustic simulations: far-field formulation and validation test cases
,”
Acta Acust.
88
,
463
(
2002
).
46.
P. J.
Morris
, “
The spatial viscous instability of axisymmetric jets
,”
J. Fluid Mech.
77
,
511
(
1976
).
47.
Z. D.
Husain
and
A. K. M. F.
Hussain
, “
Axisymmetric mixing layer: influence of the initial and boundary conditions
,”
AIAA J.
17
,
48
(
1979
).
48.
E.
Gutmark
and
C.-M.
Ho
, “
Preferred modes and the spreading rates of jet
,”
Phys. Fluids
26
,
2932
(
1983
).
49.
A. K. M. F.
Hussain
and
M. F.
Zedan
, “
Effects of the initial condition on the axisymmetric free shear layer: Effects of the initial momentum thickness
,”
Phys. Fluids
21
,
1100
(
1978
).
50.
S. B.
Pope
,
Turbulent Flows
(
Cambridge University Press
,
Cambridge, UK
,
2000
).
51.
C.
Bailly
and
G.
Comte-Bellot
,
Turbulence
(
CNRS Editions
,
Paris
,
2003
).
52.
A.
Dejoan
and
M. A.
Leschziner
, “
Large eddy simulation of a plane turbulent wall jet
,”
Phys. Fluids
17
,
025102
(
2005
).
You do not currently have access to this content.