The goal of the present study is to investigate the instability of viscous fluid displacement by a less viscous one in a two-dimensional channel, and to the determine the characteristics of displacement quality and entrapment zones. Experiments on miscible displacement of fluids in Hele-Shaw cells were conducted under microgravity conditions. Extensive direct numerical simulations allowed to investigate the sensitivity of the displacement process to the variation of values of the main governing parameters. Validation of the code was performed by comparing the results of model problems simulations with experiments and with the existing solutions published in literature. Numerical simulations allowed to explain new experimental results on the pear shape of fingers and periodical separation of their tip elements from the main body of displacing fluid. These separated blobs of less viscous fluid move much faster than the mean flow of the displaced viscous fluid. The results of numerical simulations processed on the basis of dimensions analysis allow to introduce parameters characterizing the quality of displacement and the mixing flux induced by instability. Functional forms describing additional mixing induced by displacement instability were developed. The influence of inhomogeneity of porous matrix on displacement instability is being investigated. The modified Hele-Shaw cell containing regular and randomized obstacles is used to study the effect of inhomogeneity on displacement instability. The result of numerical simulations as well as physical experiment shows that the presence of inhomogeneity of a definite length scale could stabilize unstable displacement and could destabilize a stable one.

1.
G. I.
Barenblatt
,
V. M.
Entov
, and
V. M.
Ryzhik
,
Theory of Fluids Flows Through Natural Rocks
(
Kluwer Academic
, Dordrecht,
1990
).
2.
D. A.
Nield
and
A.
Bejan
,
Convection in Porous Media
(
Springer
, New York,
1992
).
3.
J.
Bear
and
Y.
Bachmat
,
Introduction to Modelling of Transport Phenomena in Porous Media
(
Kluwer Academic
, Dordrecht,
1990
).
4.
M.
Kaviany
,
Principles of Heat Transfer in Porous Media
(
Dover
, New York,
1988
).
5.
P. G.
Saffman
and
G. J.
Taylor
, “
The penetration of a fluid into a porous medium of Hele-Shaw cell containing a more viscous fluid
,”
Proc. R. Foc. Zond.
A245
,
312
(
1958
).
6.
P.
Zhuravlev
, “
Shape of interface in fluids displacement
,”
Zap Leningrad Com. Inst.
133
,
54
(
1956
) (in Russian).
7.
E.
Meiburg
and
G. M.
Homsy
, “
Nonlinear unstable viscous fingers in Hele-Shaw flows. II. Numerical simulation
,”
Phys. Fluids
31
,
429
(
1988
).
8.
S.
Tanveer
, “
Surprises in viscous fingering
,”
J. Fluid Mech.
409
,
273
(
2000
).
9.
A.
De Wit
and
G. M.
Homsy
, “
Viscous fingering in periodically heterogeneous porous media. Part II. Numerical simulations
,”
J. Chem. Phys.
107
,
9619
(
1997
).
10.
X.
Guan
and
R.
Pitchumani
, “
Viscous fingering in a Hele-Shaw cell with finite viscosity ratio and interfacial tension
,”
ASME J. Fluids Eng.
125
,
354
(
2003
).
11.
N. N.
Smirnov
,
V. R.
Dushin
,
J. C.
Legros
,
E.
Istasse
,
N.
Bosseret
,
J. C.
Mincke
, and
S.
Goodman
, “
Multiphase flow in porous media—mathematical model and micro-gravity experiments
,”
Microgravity Sci. Technol.
9
,
222
(
1996
).
12.
N. N.
Smirnov
,
J. C.
Legros
,
V. F.
Nikitin
,
E.
Istasse
,
A. V.
Norkin
,
V. M.
Shevtsova
, and
O. V.
Kudryavtseva
, “
Capillary driven filtration in porous media
,”
Microgravity Sci. Technol.
12
,
23
(
1999
).
13.
N. N.
Smirnov
,
V. F.
Nikitin
,
A. V.
Norkin
,
A. B.
Kiselev
,
J. C.
Legros
, and
E.
Istasse
, “
Microgravity investigation of capillary forces in porous media
,”
Space Forum
6
,
1
(
2000
).
14.
N. N.
Smirnov
,
V. F.
Nikitin
,
O. E.
Ivashnyov
,
J. C.
Legros
,
A.
Vedernikov
,
B.
Scheid
, and
E.
Istasse
, “
Instability in viscous fluids displacement from cracks and porous samples
,”
Proceedings of the 53rd IAF Congress
, Houston,
2002
.
15.
A.
Vedernikov
,
B.
Scheid
,
E.
Istasse
, and
J. C.
Legros
, “
Viscous fingering in miscible liquids under microgravity conditions
,”
Phys. Fluids
13
,
S12
(
2001
).
16.
N. N.
Smirnov
,
J. C.
Legros
,
V. F.
Nikitin
,
E.
Istasse
,
L.
Schramm
,
F.
Wassmuth
, and
D’Arcy
Hart
, “
Filtration in artificial porous media and natural sands under microgravity conditions
,”
Microgravity Sci. Technol.
14
,
3
(
2003
).
17.
Ph.
Tardy
, “
Viscous fingering in porous media. Towards 1D averaged models for fracture cleanup simulation
,”
Proceedings of the Moscow SMR Workshop
,
2003
.
18.
N. N.
Smirnov
,
V. F.
Nikitin
,
O. E.
Ivashnyov
,
A.
Maximenko
,
M.
Thiercelin
,
A.
Vedernikov
,
B.
Scheid
, and
J. C.
Legros
, “
Microgravity investigations of instability and mixing flux in frontal displacement of fluids
,”
Microgravity Sci. Technol.
15
,
35
(
2004
).
19.
G. H.
Hardy
,
J. E.
Littlewood
, and
G.
Pólya
,
Inequalities
(
Cambridge University Press
, Cambridge,
1959
).
20.
V. F.
Nikitin
,
N. N.
Smirnov
, and
J. C.
Legros
, “
Effect of fingering in porous media
,”
Proceedings of the 52nd IAF Congress
, Toulouse,
2001
.
21.
H. C.
Yee
,
R. F.
Warming
, and
A.
Harten
, “
Implicit total variation diminishing (TVD) schemes for steady-state calculations
,”
J. Comput. Phys.
57
,
327
(
1985
).
22.
D. C.
Brock
and
F. M.
Orr
, “
Flow visualization of viscous fingering in heterogeneous porous media
,” SPE 22614 (
1991
).
23.
K. S.
Sorbie
,
H. R.
Zhang
, and
N. B.
Tsibuklis
, “
Linear viscous fingering: new experimental results, direct simulation and the evaluation of averaged models
,”
Chem. Eng. Sci.
50
,
601
(
1995
).
24.
D. A.
Anderson
,
J. C.
Tannenhill
, and
R. H.
Pletcher
,
Computational Fluid Mechanics and Heat Transfer
(
McGraw-Hill
, New York,
1984
).
25.
W. H.
Press
,
B. P.
Flannery
,
S. A.
Teukolsky
, and
W. T.
Vetterlin
,
Numerical Recipes in C
, 2nd ed. (
Cambridge University Press
, Cambridge,
1992
).
You do not currently have access to this content.