Ultrasensitive detectors and readout devices based on the radio frequency single electron transistor (rf-SET) combine near quantum-limited sensitivity with fast operation. Here we describe a twin rf-SET detector that uses two superconducting rf-SETs to perform fast, real-time cross-correlated measurements in order to distinguish subelectron signals from charge noise on microsecond time scales. The twin rf-SET makes use of two tuned resonance circuits to simultaneously and independently address both rf-SETs using wavelength division multiplexing and a single cryogenic amplifier. We focus on the operation of the twin rf-SET as a charge detector and evaluate the cross talk between the two resonance circuits. Real-time suppression of charge noise is demonstrated by cross correlating the signals from the two rf-SETs. For the case of simultaneous operation, the rf-SETs had charge sensitivities of δqSET1=7.5μeHz and δqSET2=4.4μeHz.

1.
R. J.
Schoelkopf
,
P.
Wahlgren
,
A. A.
Kozhevnikov
,
P.
Delsing
, and
D. E.
Prober
,
Science
280
,
1238
(
1998
).
2.
M. H.
Devoret
and
R. J.
Schoelkopf
,
Nature (London)
406
,
1039
(
2000
).
3.
S.
Komiyama
,
O.
Astaflev
,
V.
Antonov
,
T.
Kutsuwa
, and
H.
Hirai
,
Nature (London)
403
,
405
(
2000
).
4.
R. J.
Schoelkopf
,
S. H.
Moseley
,
C. M.
Stahle
,
P.
Wahlgren
, and
P.
Delsing
,
IEEE Trans. Appl. Supercond.
9
,
2935
(
1999
).
5.
V.
Bouchiat
,
G.
Chardin
,
M. H.
Devoret
, and
D.
Esteve
,
Hyperfine Interact.
109
,
345
(
1997
).
6.
M. P.
Blencowe
and
M. N.
Wybourne
,
Appl. Phys. Lett.
77
,
3845
(
2000
).
7.
T. R.
Stevenson
,
F. A.
Pellerano
,
C. M.
Stahle
,
K.
Aidala
, and
R. J.
Schoelkopf
,
Appl. Phys. Lett.
80
,
3012
(
2002
).
8.
K.
Segall
,
K. W.
Lehnert
,
T. R.
Stevenson
,
R. J.
Schoelkopf
,
P.
Wahlgren
,
A.
Aassime
, and
P.
Delsing
,
Appl. Phys. Lett.
81
,
4859
(
2002
).
9.
T. R.
Stevenson
,
A.
Aassime
,
P.
Delsing
,
R.
Schoelkopf
,
K.
Segall
, and
C. M.
Stahle
,
IEEE Trans. Appl. Supercond.
11
,
692
(
2001
).
10.
A.
Aassime
,
G.
Johansson
,
G.
Wendin
,
R. J.
Schoelkopf
, and
P.
Delsing
,
Phys. Rev. Lett.
86
,
3376
(
2001
).
11.
R.
Bradley
,
J.
Clarke
,
D.
Kinion
,
L. J.
Rosenberg
,
K.
van Bibber
,
S.
Matsuki
,
M.
Muck
, and
P.
Sikivie
,
Rev. Mod. Phys.
75
,
777
(
2003
).
12.
T. M.
Buehler
,
D. J.
Reilly
,
R.
Brenner
,
A. R.
Hamilton
,
A. S.
Dzurak
, and
R. G.
Clark
,
Appl. Phys. Lett.
82
,
577
(
2003
).
13.
A. A.
Clerk
,
S. M.
Girvin
,
A.
Nguyen
, and
A. D.
Stone
,
Phys. Rev. Lett.
89
,
176804
(
2002
).
14.
H.
Grabert
and
M. H.
Devoret
,
NATO ASI Ser., Ser. B
294
,
(
1992
).
15.
T.
Fujisawa
and
Y.
Hirayama
,
Appl. Phys. Lett.
77
,
543
(
2000
).
16.
T.
Fulton
,
P.
Gammel
,
D.
Bishop
,
L.
Dunkelberger
, and
G.
Dolan
,
Phys. Rev. Lett.
63
,
1307
(
1989
).
17.
M.
Muck
,
IEEE Trans. Magn.
27
,
2986
(
1991
).
18.
Microwave Office
, Applied Wave Research, Inc. (www.appwave.com/products/mwoffice/).
19.
D. M.
Pozar
,
Microwave Engineering
(
Wiley
, New York,
1998
).
20.
The cryogenic amplifier is manufactured by Berkshire Technologies Inc. and achieves a noise temperature TN<2K at 20K case temperature. The bandwidth is 310MHz410MHz, with a gain of 40dB. (www.berkshiretech.com).
21.
The narrow bandpass filters were custom built by Reactel (www.reactel.com).
22.
T. A.
Fulton
and
G. J.
Dolan
,
Phys. Rev. Lett.
59
,
109
(
1987
).
23.
L.
Roschier
,
P.
Hakonen
,
K.
Bladh
,
P.
Delsing
,
K. W.
Lehnert
,
L.
Spietz
, and
R. J.
Schoelkopf
,
J. Appl. Phys.
95
,
1274
(
2004
).
24.
J. B.
Hagen
,
Radio-Frequency Electronics
(
Cambridge University Press
, Cambridge,
1996
).
25.
A.
Aassime
,
D.
Gunnarsson
,
K.
Bladh
, and
P.
Delsing
,
Appl. Phys. Lett.
79
,
4031
(
2001
).
You do not currently have access to this content.