With the use of invariance principles in a systematic fashion, we shall derive not only new analytic formulations of the classical particle processes, those of transport theory, radiative transfer, random walk, multiple scattering, and diffusion theory, but, in addition, new computational algorithms which seem well fitted to the capabilities of digital computers. Whereas the usual methods reduce problems to the solution of systems of linear equations, we shall try to reduce problems to the iteration of nonlinear transformations.

Although we have analogous formulations of wave processes, we shall reserve for a second paper in this series a detailed and extensive treatment of this part of mathematical physics.

1.
E. Hille and R. Phillips, Functional Analysis and Semi‐Groups (American Mathematical Society, Providence, Rhode Island, 1957).
2.
R.
Bellman
and
R.
Kalaba
,
Proc. Natl. Acad. Sci. U.S.
44
,
317
(
1958
).
3.
R. Bellman and R. Kalaba, “Invariant imbedding and wave propagation in stochastic media,” Proceeding International Congress in EM Theory (Academic Press, Inc., London).
4.
R.
Bellman
and
R.
Kalaba
,
J. Math. and Mech.
8
,
683
(
1959
).
5.
S. Chandrasekhar, Radiative Transfer (Oxford University Press, New York, 1950).
6.
V. A.
Ambarzumian
,
Compt. Rend. Acad. Sci. U.R.S.S.
38
,
229
(
1943
).
7.
R.
Preisendorfer
,
Proc. Natl. Acad. Sci. U.S.
44
,
320
(
1958
).
8.
R.
Preisendorfer
,
J. Math. and Mech.
6
,
686
(
1957
).
9.
A. Ramakrishnan, in “Probability and stochastic processes,” in Encyclopedia of Physics (Springer‐Verlag, Berlin, 1959), vol. 111/2.
10.
R.
Redheffer
,
J. Rational Mech. and Anal.
3
,
271
(
1954
).
11.
S.
Ueno
,
Ann. Astrophys.
21
,
1
(
1958
).
12.
S. Ueno (to be published).
13.
S. Ueno (to be published).
14.
R.
Bellman
and
T. E.
Harris
,
Ann. Math.
55
,
280
(
1952
).
15.
R.
Bellman
and
T. E.
Harris
,
Proc. Natl. Acad. Sci. U.S.
34
,
601
(
1948
).
16.
L. Janossy, Cosmic Rays (Oxford University Press, New York, 1950).
17.
T. E. Harris, Ergeb Math. (1961).
18.
T. E. Harris, “Some mathematical models for branching processes,” Proc. Second Berkeley Symposium on Mathematical Statistics and Probability, 1951, pp. 305–328.
19.
A. Ramakrishnan, “Stochastic processes,” Handbuch der Physik.
20.
R. Bellman, Dynamic Programming (Princeton University Press, Princeton, New Jersey, 1957).
21.
R.
Bellman
and
H.
Osborn
,
J. Math. and Mech.
7
,
81
(
1958
).
22.
B. Davison, Neutron Transport Theory (Oxford University Press, New York, 1957).
23.
J.
Lehner
and
G. M.
Wing
,
Commum. Pure and Appl. Math.
8
,
217
(
1955
).
24.
J.
Lehner
and
G. M.
Wing
,
Duke Math. J.
23
,
125
(
1956
).
25.
G. M. Wing, “Transport theory and spectral problems,” Proc. Symposium on Reactor Theory (American Mathematical Society, Providence, Rhode Island) to be published.
26.
J.
Lehner
,
Commum. Pure Appl. Math.
9
,
487
(
1956
).
27.
K.
Jörgens
,
Commum. Pure Appl. Math.
11
,
219
(
1958
).
28.
G.
Pimbley
,
J. Math. and Mech.
8
,
837
(
1959
).
29.
C. J. Everett and S. Ulam, Los Alamos Scientific Lab., declassified documents LADC‐534 (AECD‐2164), May 6, 1948;
LADC‐533 (AECD‐2165), June 11, 1948;
and LA‐707, October 28, 1948.
30.
The notation f(x) = o[g(x)] is used to mean limf(x)/g(x) = 0, where the sense of the limit is usually obvious from the context.
31.
For a definition and discussion of semigroups see footnote reference 1.
32.
F. Jenkins and H. White, Fundamentals of Optics (McGraw‐Hill Book Company, Inc., New York, 1950), pp. 199–201.
33.
R.
Bellman
,
R.
Kalaba
, and
G. M.
Wing
,
J. Math. and Mech.
7
,
741
(
1958
).
34.
R. Bellman and R. Kalaba, “Transport theory and invariant imbedding,” Proc. Symposium on Reactor Theory (American Mathematical Society, Providence, Rhode Island), to be published.
35.
D. McGarvey (to be published).
36.
T. Mullikin and R. Snow (unpublished).
37.
R. Bellman, Introduction to Matrix Analysis (McGraw‐Hill Book Company, Inc., New York, 1960), Chap. 16.
38.
R. Bellman and J. M. Danskin, The RAND Corporation, Rep. R‐256, Chap. 5, March 1, 1954.
39.
G.
Birkhoff
,
Proc. Nat. Acad. Sci. U.S.
45
,
567
(
1959
).
40.
Throughout this paper we measure fluxes with respect to the geometrical areas on which they impinge, rather than with respect to a plane normal to the beam. For a discussion, see Sec. 59.
41.
R.
Bellman
,
R.
Kalaba
, and
G. M.
Wing
,
J. Math. and Mech.
8
,
575
(
1959
).
42.
R. Bellman and S. Dreyfus, “Functional approximations and dynamic programming,” Math. Tables and other Aids to Comb. (1959).
43.
R. Redheffer, in Mathematics for Modern Engineers (1960), Vol. 2.
44.
R.
Bellman
,
R.
Kalaba
, and
G. M.
Wing
,
J. Math. and Mech.
7
,
149
(
1958
).
45.
R.
Bellman
,
R.
Kalaba
, and
G. M.
Wing
,
J. Math. and Mech.
8
,
249
(
1959
).
46.
R. Courant and D. Hilbert, Methoden der Mathematischen Physik (Interscience Publishers, Inc., New York, 1937).
47.
G. M.
Wing
,
J. Math. and Mech.
7
,
757
(
1958
).
48.
A. Weinberg and E. Wigner, The Physical Theory of Neutron Chain Reactors (University of Chicago Press, Chicago, Illinois, 1958).
49.
W.
Wasow
,
Ann. Math.
52
,
350
(
1950
).
50.
R.
Bellman
,
Proc. Cambridge Phil. Soc.
53
,
257
(
1957
).
51.
S.
Chandrasekhar
,
Revs. Modern Phys.
15
,
1
(
1943
).
52.
R. Bellman, Introduction to Matrix Analysis (McGraw‐Hill Book Company, Inc., New York, 1960).
53.
R.
Bellman
and
R.
Kalaba
,
J. Math. and Mech.
9
,
411
(
1960
).
54.
It is convenient here to reverse the index order as compared to previous usage (see Sec. 8).
55.
R.
Bellman
and
R.
Kalaba
,
Proc. Natl. Acad. Sci. U.S.
42
,
629
(
1956
).
This content is only available via PDF.
You do not currently have access to this content.