Suppose an electric current I flows along a magnetic flux tube that has poloidal flux ψ and radius a=a(z), where z is the axial position along the flux tube. This current creates a toroidal magnetic field Bφ. It is shown that, in such a case, nonlinear, nonconservative J×B forces accelerate plasma axially from regions of small a to regions of large a and that this acceleration is proportional to ∂I2/∂z. Thus, if a current-carrying flux tube is bulged at, say, z=0 and constricted at, say, z=±h, then plasma will be accelerated from z=±h towards z=0 resulting in a situation similar to two water jets pointed at each other. The ingested plasma convects embedded, frozen-in toroidal magnetic flux from z=±h to z=0. The counterdirected flows collide and stagnate at z=0 and in so doing (i) convert their translational kinetic energy into heat, (ii) increase the plasma density at z≈0, and (iii) increase the embedded toroidal flux density at z≈0. The increase in toroidal flux density at z≈0 increases Bφ and hence increases the magnetic pinch force at z≈0 and so causes a reduction of a(0). Thus, the flux tube develops an axially uniform cross section, a decreased volume, an increased density, and an increased temperature. This model is proposed as a likely hypothesis for the long-standing mystery of why solar coronal loops are observed to be axially uniform, hot, and bright. It is furthermore argued that a small number of tail particles bouncing between the approaching counterstreaming plasma jets should be Fermi accelerated to extreme energies. Finally, analytic solution of the Grad–Shafranov equation predicts that a flux tube becomes axially uniform when the ingested plasma becomes hot and dense enough to have 0nκT/Bpol2=(μ0Ia(0)/ψ)2/2; observed coronal loop parameters are in reasonable agreement with this relationship which is analogous to having βpol=1 in a tokamak.

1.
J. A.
Klimchuk
,
Sol. Phys.
193
,
53
(
2000
).
2.
M. J.
Aschwanden
,
R. W.
Nightingale
, and
D.
Alexander
,
Astrophys. J.
541
,
1059
(
2000
).
3.
J. F.
Hansen
and
P. M.
Bellan
,
Astrophys. J. Lett.
563
,
L183
(
2001
).
4.
E. N. Parker, Cosmical Magnetic Fields, Their Origin and Their Activity (Clarendon, Oxford, 1979), Chap. 9.
5.
P. K.
Browning
and
E. R.
Priest
,
Astrophys. J.
266
,
848
(
1983
).
6.
E. G.
Zweibel
and
A. H.
Boozer
,
Astrophys. J.
295
,
642
(
1985
).
7.
P. K.
Browning
and
A. W.
Hood
,
Sol. Phys.
124
,
271
(
1989
).
8.
R. M.
Lothian
and
A. W.
Hood
,
Sol. Phys.
122
,
227
(
1989
).
9.
R. A. M.
Van der Linden
and
A. W.
Hood
,
Astron. Astrophys.
346
,
303
(
1999
).
10.
E. N.
Parker
,
Astrophys. J.
471
,
485
(
1996
).
11.
M. G.
Linton
,
R. B.
Dahlburg
, and
S. K.
Antiochos
,
Astrophys. J.
553
,
905
(
2001
).
12.
Y.
Mok
,
G.
Van Hoven
, and
Z.
Mikic
,
Astrophys. J. Lett.
490
,
L107
(
1997
).
13.
D. W.
Longcope
and
B. T.
Welsch
,
Astrophys. J.
545
,
1089
(
2000
).
14.
J.
Chen
,
Space Sci. Rev.
95
,
165
(
2001
).
15.
D. B.
Melrose
,
Astrophys. J.
451
,
391
(
1995
).
16.
Y.-T.
Lau
and
J. M.
Finn
,
Phys. Plasmas
3
,
3983
(
1996
).
17.
U.
Feldman
,
Phys. Scr.
65
,
185
(
2002
);
also private communication.
18.
M. S.
Wheatland
,
Astrophys. J.
532
,
616
(
2000
).
19.
F. F. Chen, Introduction to Plasma Physics and Controlled Fusion, 2nd ed. (Plenum, New York, 1984), p. 40.
20.
P. M. Bellan, Spheromaks (Imperial College Press, London, 2000), pp. 207–208.
21.
F. F. Chen, Introduction to Plasma Physics and Controlled Fusion, 2nd ed. (Plenum, New York, 1984), p. 57.
22.
H.
Maeker
,
Z. Phys.
141
,
198
(
1955
).
23.
J.
Marshall
,
Phys. Fluids
3
,
134
(
1960
).
24.
T. B.
Reed
,
J. Appl. Phys.
31
,
2048
(
1960
).
25.
P. M.
Bellan
,
Phys. Rev. Lett.
69
,
3515
(
1992
).
26.
J. M.
Polygiannakis
and
X.
Moussas
,
Plasma Phys. Controlled Fusion
41
,
967
(
1999
).
27.
H.
Grad
,
Phys. Fluids
10
,
137
(
1967
);
V. D.
Shafranov
,
Rev. Plasma Phys.
2
,
103
(
1966
).
28.
T. H.
Jensen
,
Phys. Plasmas
9
,
2857
(
2002
).
29.
A. A.
Pevtsov
,
R. C.
Canfield
, and
A. N.
McClymont
,
Astrophys. J.
481
,
973
(
1997
).
30.
M. D.
Kruskal
,
J. L.
Johnson
,
M. B.
Gottlieb
, and
L. M.
Goldman
,
Phys. Fluids
1
,
421
(
1958
);
V. D.
Shafranov
,
Sov. Phys. JETP
6
,
545
(
1958
).
31.
A. W.
Hood
and
E. R.
Priest
,
Sol. Phys.
64
,
303
(
1979
).
32.
M. G.
Linton
,
D. W.
Longcope
, and
G. H.
Fisher
,
Astrophys. J.
469
,
954
(
1996
).
33.
D. M.
Rust
and
A.
Kumar
,
Astrophys. J. Lett.
464
,
L199
(
1996
).
34.
S. C.
Hsu
and
P. M.
Bellan
,
Mon. Not. R. Astron. Soc.
334
,
257
(
2002
).
35.
Y.
Uchida
and
K.
Shibata
,
Sol. Phys.
116
,
291
(
1988
).
This content is only available via PDF.
You do not currently have access to this content.