Skip to main content
Log in

Reducibility of the Linear Quantum Harmonic Oscillators Under Quasi-periodic Reversible Perturbation

  • Published:
Qualitative Theory of Dynamical Systems Aims and scope Submit manuscript

Abstract

In this paper, we establish the reducibility of a class of linear coupled quantum harmonic oscillator systems under time quasi-periodic, non-Hamiltonian, reversible perturbations. This essentially means that for most values of the frequency vector, these systems can be reduced to autonomous reversible systems with constant coefficients with respect to time. Our proof relies on an application of Kolmogorov–Arnold–Moser (KAM) theory for infinite dimensional reversible systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baldi, P., Berti, M., Montalto, R.: KAM for quasi-linear and fully nonlinear forced perturbations of Airy equation. Math. Ann. 359(1–2), 471–536 (2014)

    Article  MathSciNet  Google Scholar 

  2. Bambusi, D.: Reducibility of 1-d Schrödinger equation with time quasiperiodic unbounded perturbations II. Comm. Math. Phys. 353(1), 353–378 (2017)

    Article  MathSciNet  Google Scholar 

  3. Bambusi, D.: Reducibility of 1-d Schrödinger equation with time quasiperiodic unbounded perturbations I. Trans. Amer. Math. Soc. 370(3), 1823–1865 (2018)

    Article  MathSciNet  Google Scholar 

  4. Bambusi, D., Graffi, S.: Time quasi-periodic unbounded perturbations of Schrödinger operators and KAM methods. Comm. Math. Phys. 219, 465–480 (2001)

    Article  MathSciNet  Google Scholar 

  5. Bambusi, D., Grébert, B., Maspero, A., Robert, D.: Reducibility of the quantum harmonic oscillator in \(d\)-dimensions with polynomial time-dependent perturbation. Anal. PDE 11(3), 775–799 (2018)

    Article  MathSciNet  Google Scholar 

  6. Bambusi, D., Langella, B., Montalto, R.: Reducibility of non-resonant transport equation on \(\mathbb{T} ^d\) with unbounded perturbations. Ann. Henri Poincaré 20(6), 1893–1929 (2019)

    Article  MathSciNet  Google Scholar 

  7. Bambusi, D., Montalto, R.: Reducibility of 1-d Schrödinger equation with unbounded time quasiperiodic perturbations III. J. Math. Phys. 59(12), 122702 (2018)

    Article  MathSciNet  Google Scholar 

  8. Berti, M., Biasco, L., Procesi, M.: KAM for reversible derivative wave equations. Arch. Ration. Mech. Anal. 212, 905–955 (2014)

    Article  MathSciNet  Google Scholar 

  9. Courant, R., Hilbert, D.: Methods of mathematical physics, vol. I. Interscience Publishers, New York (1953)

    Google Scholar 

  10. Eliasson, H., Kuksin, S.B.: On reducibility of Schrödinger equations with quasiperiodic in time potentials. Comm. Math. Phys. 286(1), 125–135 (2009)

    Article  MathSciNet  Google Scholar 

  11. Feola, R., Grébert, B., Nguyen, T.: Reducibility of Schrödinger equation on a Zoll manifold with unbounded potential. J. Math. Phys. 61(7), 071501 (2020)

    Article  MathSciNet  Google Scholar 

  12. Feola, R., Grébert, B.: Reducibility of Schrödinger equation on the sphere. Int. Math. Res. Not. IMRN 19, 15082–15120 (2021)

    Article  Google Scholar 

  13. Feola, R., Procesi, M.: Quasi-periodic solutions for fully nonlinear forced reversible Schrödinger equations. J. Diff. Eq. 259(7), 3389–3447 (2015)

    Article  Google Scholar 

  14. Franzoi, L., Maspero, A.: Reducibility for a fast-driven linear Klein-Gordon equation. Ann. Mat. Pura Appl. 198(4), 1407–1439 (2019)

    Article  MathSciNet  Google Scholar 

  15. Geng, J., Ren, X., Yi, Y.: Reducibility of quasi-periodic linear KdV equation. J. Dyn. Diff. Eq. 34(1), 271–310 (2022)

    Article  MathSciNet  Google Scholar 

  16. Grébert, B., Paturel, E.: On reducibility of quantum harmonic oscillator on \(\mathbb{R} ^d\) with quasiperiodic in time potential. Ann. Fac. Sci. Toulouse Math. 28(5), 977–1014 (2019)

    Article  MathSciNet  Google Scholar 

  17. Grébert, B., Thomann, L.: KAM for the quantum harmonic oscillator. Comm. Math. Phys. 307(2), 383–427 (2011)

    Article  MathSciNet  Google Scholar 

  18. Kuksin, S.B.: Analysis of Hamiltonian PDEs. Oxford lecture series in mathematics and its applications, vol. 19. Oxford University Press, Oxford (2000)

    Google Scholar 

  19. Liang, Z., Wang, Z.: Reducibility of quantum harmonic oscillator on \(\mathbb{R} ^d\) with differential and quasi-periodic in time potential. J. Diff. Eq. 267(5), 3355–3395 (2019)

    Article  Google Scholar 

  20. Liang, Z., Wang, Z.: Reducibility of 1D quantum harmonic oscillator with decaying conditions on the derivative of perturbation potentials. Nonlinearity 35(9), 4850–4875 (2022)

    Article  MathSciNet  Google Scholar 

  21. Liang, Z., Zhao, Z., Zhou, Q.: 1-d quantum harmonic oscillator with time quasi-periodic quadratic perturbation: reducibility and growth of Sobolev norms. J. Math. Pures Appl. 9(146), 158–182 (2021)

    Article  MathSciNet  Google Scholar 

  22. Liu, J., Yuan, X.: Spectrum for quantum Duffing oscillator and small-divisor equation with large-variable coefficient. Comm. Pure Appl. Math. 63(9), 1145–1172 (2010)

    Article  MathSciNet  Google Scholar 

  23. Lou, Z., Si, J.: Quasi-periodic solutions for the reversible derivative nonlinear Schrödinger equations with periodic boundary conditions. J. Dyn. Diff. Eq. 29(3), 1031–1069 (2017)

    Article  Google Scholar 

  24. Lou, Z., Wu, J.: KAM tori for the system of coupled quantum harmonic oscillators with reversible perturbations. J. Dyn. Diff. Eq. (2022). https://doi.org/10.1007/s10884-022-10203-9

    Article  Google Scholar 

  25. Montalto, R.: A reducibility result for a class of linear wave equations on \(\mathbb{T} ^d\). Int. Math. Res. Not. IMRN 6, 1788–1862 (2019)

    Google Scholar 

  26. Sun, Y., Li, J.: Reducibility of relativistic Schrödinger equation with unbounded perturbations. J. Diff. Equ. 286, 215–247 (2021)

    Article  Google Scholar 

  27. Wang, W.: Pure point spectrum of the Floquet Hamiltonian for the quantum harmonic oscillator under time quasi-periodic perturbations. Comm. Math. Phys. 277(2), 459–496 (2008)

    Article  MathSciNet  Google Scholar 

  28. Wang, Z., Liang, Z.: Reducibility of 1D quantum harmonic oscillator perturbed by a quasiperiodic potential with logarithmic decay. Nonlinearity 30(4), 1405–1448 (2017)

    Article  MathSciNet  Google Scholar 

  29. Yuan, X., Zhang, K.: A reduction theorem for time dependent Schrödinger operator with finite differentiable unbounded perturbation. J. Math. Phys. 54(5), 052701 (2013)

    Article  MathSciNet  Google Scholar 

  30. Zhang, J., Gao, M., Yuan, X.: KAM tori for reversible partial differential equations. Nonlinearity 24, 1189–1228 (2011)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We would like to extend our sincere gratitude to the anonymous reviewers for their valuable comments and suggestions, which significantly improved the quality of this paper. This research was supported by the National Natural Science Foundation of China(NSFC)(Grant No.11901291) and the Natural Science Foundation of Jiangsu Province, China(Grant No.BK20190395). Y. Sun was also supported by MIIT Key Laboratory of Mathematical Modelling and High Performance Computing of Air Vehicles (Grant No.202307).

Author information

Authors and Affiliations

Authors

Contributions

YW wrote the main manuscript text, ZL and YS edited the manuscript. All authors reviewed the manuscript.

Corresponding author

Correspondence to Yingnan Sun.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

In this section, we present a KAM theorem that has been proven in [24].

Consider a family of \(S-\)reversible normal form vector fields of the form

$$\begin{aligned}{} & {} \begin{aligned} X^0(\zeta )=&N(\zeta )+\mathcal {A}(\zeta ), \\ N=&\sum _{b=1}^n \omega _b(\zeta ) \frac{\partial }{\partial \theta _b}+\sum _{b=1}^m \tilde{\omega }_b(\zeta ) \frac{\partial }{\partial \varphi _b} \\&+\sum _{\varrho = \pm }\left( \sum _{j \ge 1} \varrho i \Omega _j(\zeta ) z_j^{\varrho } \frac{\partial }{\partial z_j^\rho }+\sum _{j \ge 1} \varrho i \widetilde{\Omega }_j(\zeta ) w_j^{\varrho } \frac{\partial }{\partial w_j^{\varrho }}\right) {,} \end{aligned} \end{aligned}$$
(4.13)
$$\begin{aligned} \mathcal {A}= & {} \sum _{\varrho = \pm } \sum _{j \ge 1}\left( \varrho \textrm{i} A_j(\zeta ) w_j^\rho \frac{\partial }{\partial z_j^\rho }+\varrho \textrm{i} \tilde{A}_j(\zeta ) z_j^{\varrho } \frac{\partial }{\partial w_j^{\varrho }}\right) \end{aligned}$$
(4.14)

where \(\zeta \in \Pi ,\) \(\omega _b, \tilde{\omega }_b, \Omega _j,\,\tilde{\Omega }_j,\,A_j,\,\tilde{A}_j\in \mathbb {R}.\) For each \(\zeta \in \Pi \), the motion equation governed by the vector field \(X^0\) is

$$\begin{aligned} \left\{ \begin{array}{l} \dot{\theta }=\omega , \dot{\varphi }=\tilde{\omega },\\ \dot{I}=0, \dot{J}=0,\\ \left( \begin{array}{c} \dot{z}_j^\sigma \\ \dot{w}_j^\sigma \end{array}\right) =\sigma \textrm{i}\left( \begin{array}{cc} \Omega _j &{} A_j \\ \tilde{A}_j &{} \tilde{\Omega }_j \end{array}\right) \left( \begin{array}{c} z_j^\sigma \\ w_j^\sigma \end{array}\right) , \quad \sigma = \pm , j \ge 1. \end{array}\right. \end{aligned}$$

Obviously, \(\{(\theta +\omega t, \varphi +\tilde{\omega } t, 0,0,0,0,0,0,):t\in \mathbb {R}\}\) forms an invariant torus. Note that since in general \(\left( \begin{array}{cc} \Omega _j &{} A_j \\ \tilde{A}_j &{} \tilde{\Omega }_j \\ \end{array} \right) \) is not Hermitian, thus such invariant torus may not be elliptic.

Consider now the perturbed \(S-\)reversible vector field

$$\begin{aligned} X(\chi ;\zeta )=X^0(\zeta )+P(\chi ;\zeta )=N(\zeta )+\mathcal {A}(\zeta )+P(\chi ;\zeta ). \end{aligned}$$
(4.15)

We will prove that, for typical (in the sense of Lebesgue measure) \(\zeta \in \Pi \), the vector fields (4.15) still admit invariant tori for sufficiently small \(S-\)reversible P. For this purpose, we need the following assumptions.

In the sequel, for convenience, we also use the notations

$$\begin{aligned} \hat{\theta }=(\theta , \varphi )\in \mathbb {T}^{n}\times \mathbb {T}^{m},\,\,\widehat{\omega }=(\omega , \tilde{\omega })\in \mathbb {R}^{n}\times \mathbb {R}^{m},\,\,\hat{k}=(k, \tilde{k})\in \mathbb {Z}^{n}\times \mathbb {Z}^{m}, \\ \langle \hat{k}, \hat{\theta }\rangle =\langle k, \theta \rangle +\langle \tilde{k}, \varphi \rangle ,\,\,\langle \hat{k}, \widehat{\omega }\rangle =\langle k, \omega \rangle +\langle \tilde{k}, \tilde{\omega }\rangle ,\,\, |\hat{k}|=|k|+|\tilde{k}|. \end{aligned}$$

Assumption 4.2

(Non-degeneracy) The map \(\zeta \mapsto \widehat{\omega }(\zeta )=(\omega (\zeta ), \tilde{\omega }(\zeta ))\) is a \(C^4_W\) diffeomorphism between \(\Pi \) and its image. Moreover there exist constants \(E_1\) and \(E_2\) such that \( |\widehat{\omega }|^{\mathcal {W}}_{\Pi } \le E_1,\) and \( |\widehat{\omega }^{-1}|^{\mathcal {W}}_{\widehat{\omega }(\Pi )} \le E_2.\)

Here we define

$$\begin{aligned} |\widehat{\omega }|^{\mathcal {W}}_{\Pi } = |\widehat{\omega }|_{\Pi }+\sum ^4_{\ell =1}|\widehat{\omega }|^{C^\ell _W}_{\Pi } \end{aligned}$$

with

$$\begin{aligned} |\widehat{\omega }|_{\Pi } =\sup \limits _{ \zeta \in \Pi }|\widehat{\omega }(\zeta )|\,\,\,\hbox {and}\,\,\,|\widehat{\omega }|^{C^\ell _W}_{\Pi } =\sup \limits _{ \zeta \in \Pi }|\partial ^\ell _{\zeta } \widehat{\omega }(\zeta )|. \end{aligned}$$

Assumption 4.3

(Asymptotics of normal frequencies) There exists constant \(\beta >0\) such that

$$\begin{aligned} \Omega _j,\tilde{\Omega }_j=2j-1+O\left( \frac{1}{j^{2\beta }}\right) . \end{aligned}$$
(4.16)

Moreover we assume the functions

$$\begin{aligned} \zeta \mapsto j^{2\beta }\Omega _j(\zeta ),\,\, \zeta \mapsto j^{2\beta }\tilde{\Omega }_j(\zeta ),\,\, \zeta \mapsto j^{2\beta }A_j(\zeta ),\,\, \zeta \mapsto j^{2\beta }\tilde{A}_j(\zeta ), \end{aligned}$$

are uniformly \(C^4_W\) smooth on \(\Pi \) for all \(j\ge 1.\) And there there is a constant L such that for all \(1\le \ell \le 4,\)

$$\begin{aligned} |\Omega |^{{C^\ell _W}}_{2\beta ,\Pi },\, \, |\tilde{\Omega }|^{{C^\ell _W}}_{2\beta ,\Pi },\,\, |A|^{{C^\ell _W}}_{2\beta ,\Pi },\, \, |\tilde{A}|^{{C^\ell _W}}_{2\beta ,\Pi }\le L. \end{aligned}$$

Here we define

$$\begin{aligned} |\Omega |^{{C^\ell _W}}_{2\beta ,\Pi } =\sup \limits _{\zeta \in \Pi }\sup \limits _{j\ge 1 }j^{2\beta }|\partial ^\ell _{\zeta } \Omega _j(\zeta )|. \end{aligned}$$

Assumption 2 implies that for \(i\ne j,\)

$$\begin{aligned} \left| \frac{\Omega _i-\Omega _j}{2(i-j)}\right| ,\left| \frac{\Omega _i-\tilde{\Omega }_j}{2(i-j)}\right| ,\left| \frac{\tilde{\Omega }_i-\Omega _j}{2(i-j)}\right| ,\left| \frac{\tilde{\Omega }_i-\tilde{\Omega }_j}{2(i-j)}\right| =1+O\left( \frac{1}{i^{2\beta }}+\frac{1}{j^{2\beta }}\right) .\nonumber \\ \end{aligned}$$
(4.17)

Furthermore set \(\Omega _0=0, \widetilde{\Omega }_0=0,\) there exist the constants \(M_0>0,\,m_0>0\) such that for all \(i, j\ge 0\) and uniformly on \(\Pi ,\)

$$\begin{aligned} \begin{aligned} m_0|i-j|\le&|\Omega _i-\Omega _j|\le M_0|i-j|,\\ m_0|i-j|\le&|\Omega _i-\tilde{\Omega }_j|\le M_0|i-j|, \\ m_0|i-j|\le&|\tilde{\Omega }_i-\Omega _j|\le M_0|i-j|, \\ m_0|i-j|\le&|\tilde{\Omega }_i-\tilde{\Omega }_j|\le M_0|i-j|. \end{aligned} \end{aligned}$$
(4.18)

Denote the matrix

$$\begin{aligned} M_j\,=\left( \begin{array}{cc} \Omega _j &{} A_j \\ \tilde{A}_j &{} \tilde{\Omega }_j \\ \end{array} \right) ,\,j\ge 1. \end{aligned}$$

Assumption 4.4

(Non-resonance conditions) There exist \(\alpha , \tau >0, \) such that uniformly on \(\Pi ,\)

$$\begin{aligned} \begin{aligned}&|\langle \hat{k},\widehat{\omega }\rangle |\ge \frac{\alpha }{|\hat{k}|^\tau },\,\, \hat{k}\ne 0{,}\\&|\det (\langle \hat{k},\widehat{\omega }\rangle I_2\pm M_i)|\ge \frac{\alpha i}{|\hat{k}|^\tau },\hat{k}\ne 0,\,i\ge 1, \\&|\det (\langle \hat{k},\widehat{\omega }\rangle I_{4}+ M_i\otimes I_2\pm I_2\otimes M^T_j)|\ge \frac{\alpha |i\pm j|}{|\hat{k}|^\tau },\,\,\hat{k}\ne 0, i, j\ge 1. \\ \end{aligned} \end{aligned}$$
(4.19)

where \(I_b\) is \(b\times b\) identity matrix. \(\det (\cdot )\), \(\otimes \) and \((\cdot )^T\) denotes the determinant, the tensor product and the transpose of matrices, respectively.

Assumption 4.5

(Regularity) Suppose there exist \(s,r>0\) such that the reversible perturbation P defines a map

$$\begin{aligned} P: D(s,r)\times \Pi \rightarrow \mathscr {P}_{p}. \end{aligned}$$

Moreover, assume that \(P(\cdot ,\zeta )\) is real analytic on D(sr) for each \(\zeta \in \Pi ,\) and \(P(\chi ,\cdot )\) is \(C^4_W-\)smooth on \(\Pi \) for each \(\chi \in D(s,r).\)

Assumption 4.6

(Decay) \(P\in \Gamma ^\beta _{D(s,r)\times \Pi } \) for some \(\beta >0\).

Now we state KAM theorem.

Theorem 4.7

([24]) Suppose \(X^0=N+\mathcal {A}\) is a family of \(S-\)reversible vector field of the form (4.13) on the phase space \(\mathscr {P}_{p}\) depending on parameters \(\zeta \in \Pi \) so that Assumptions 1–3 are satisfied. Then there exist \(0< \gamma <1\) such that for every \(S-\)reversible perturbation \(X=X^0+P\) of \(X^0\) which satisfies Assumptions 4 and 5 and the smallness condition

$$\begin{aligned} \varepsilon =\Vert P\Vert ^{\alpha ,\mathcal {W}}_{r,D(s,r)\times \Pi }+\langle P\rangle ^{\alpha ,\mathcal {W}}_{D(s,r)\times \Pi }\le \gamma \alpha ^2, \end{aligned}$$

the following holds. There exist

  1. (i)

    a Cantor subset \(\Pi _\alpha \subset \Pi \) with Lebesgue measure \(Meas\left( \Pi \backslash \Pi _\alpha \right) =O\left( \alpha ^\kappa \right) \) as \(\alpha \rightarrow 0\) where \(\kappa =\min \{\frac{1}{8},\frac{\beta }{16}\};\)

  2. (ii)

    a \(C^4_W-\)smooth family of real analytic, \(S-\)invariant coordinate transformations

    $$\begin{aligned} \Phi :D(s/2,r/2)\times \Pi _\alpha \rightarrow D(s,r); \end{aligned}$$
  3. (iii)

    a \(C^4_W-\)smooth family of new normal forms \(N^{\infty }+\mathcal {A}^{\infty },\) where

    $$\begin{aligned} N^{\infty }=\omega ^{\infty } \frac{\partial }{\partial \theta }+\tilde{\omega }^{\infty } \frac{\partial }{\partial \varphi }+\sum _{\varrho = \pm } \varrho \textrm{i}\left( \Omega ^{\infty }(\zeta ) z^{\varrho } \frac{\partial }{\partial z^{\varrho }}+\widetilde{\Omega }^{\infty }(\zeta ) w^{\varrho } \frac{\partial }{\partial w^{\varrho }}\right) {,}\nonumber \\ \end{aligned}$$
    (4.20)
    $$\begin{aligned} \mathcal {A}^{\infty }=\sum _{\varrho = \pm } \varrho \textrm{i}\left( A^{\infty }(\zeta ) w^{\varrho } \frac{\partial }{\partial z^{\varrho }}+\tilde{A}^{\infty }(\zeta ) z^{\varrho } \frac{\partial }{\partial w^{\varrho }}\right) \nonumber \\ \end{aligned}$$
    (4.21)

defined on \(D(s/2,r/2)\times \Pi _\alpha ,\) such that \(\Phi ^*X=N^{\infty }+\mathcal {A}^{\infty }+P^{\infty },\) where each component \(P^{\infty ,(\textsf {v})},\) \(\textsf {v}\in \mathscr {V}\) (recall (2.5)) of \(P^{\infty }\) is real analytic on D(s/2, r/2) and of degree \(\ge 2\) at \(\mathcal {T}^{n+m}_0.\) Namely, the Taylor expansion of \(P^{\infty ,(\textsf {v})}\) only contains monomials \(I^lJ^{\tilde{l}} z^{\alpha }\bar{z}^{\beta }w^{\tilde{\alpha }}\bar{w}^{\tilde{\beta }}\) with \(|l|+|\tilde{l}|+|\alpha +\tilde{\alpha }|+|\beta +\tilde{\beta }|\ge 2.\) Moreover each \(S-\)invariant coordinate transformation is close to the identity

$$\begin{aligned} \Vert \Phi -id\Vert ^{\mathcal {W}}_{r;D(s/2,r/2)\times \Pi _\alpha },\,\,\Vert D\Phi -Id\Vert ^{\mathcal {W}}_{r;D(s/2,r/2)\times \Pi _\alpha }\le c\varepsilon ^{\frac{1}{4}}, \end{aligned}$$
(4.22)

the new frequencies are close to the unperturbed ones

$$\begin{aligned} \begin{aligned} |\hat{\omega }^{\infty }-\hat{\omega }|^{\mathcal {W}}_{\Pi _\alpha }&\le c\varepsilon ^{\frac{1}{2}},\\ \end{aligned} \end{aligned}$$
(4.23)
$$\begin{aligned} |\Omega ^{\infty }-\Omega |^{\alpha /2,\mathcal {W} }_{2\beta , \Pi _\alpha },\,\, |\tilde{\Omega }^{\infty }-\tilde{\Omega }|^{\alpha /2,\mathcal {W} }_{2\beta , \Pi _\alpha }\le c\varepsilon ^{\frac{1}{2}}, \end{aligned}$$
(4.24)
$$\begin{aligned} |A^{\infty }-A|^{\alpha /2,\mathcal {W} }_{2\beta , \Pi _\alpha },\,\, |\tilde{A}^{\infty }-\tilde{A}|^{\alpha /2,\mathcal {W} }_{2\beta , \Pi _\alpha }\le c\varepsilon ^{\frac{1}{2}}. \end{aligned}$$
(4.25)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lou, Z., Sun, Y. & Wu, Y. Reducibility of the Linear Quantum Harmonic Oscillators Under Quasi-periodic Reversible Perturbation. Qual. Theory Dyn. Syst. 23, 224 (2024). https://doi.org/10.1007/s12346-024-01067-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12346-024-01067-z

Keywords

Mathematics Subject Classification

Navigation