Skip to main content
Log in

KAM for quasi-linear and fully nonlinear forced perturbations of Airy equation

  • Published:
Mathematische Annalen Aims and scope Submit manuscript

Abstract

We prove the existence of small amplitude quasi-periodic solutions for quasi-linear and fully nonlinear forced perturbations of the linear Airy equation. For Hamiltonian or reversible nonlinearities we also prove their linear stability. The key analysis concerns the reducibility of the linearized operator at an approximate solution, which provides a sharp asymptotic expansion of its eigenvalues. For quasi-linear perturbations this cannot be directly obtained by a KAM iteration. Hence we first perform a regularization procedure, which conjugates the linearized operator to an operator with constant coefficients plus a bounded remainder. These transformations are obtained by changes of variables induced by diffeomorphisms of the torus and pseudo-differential operators. At this point we implement a Nash–Moser iteration (with second order Melnikov non-resonance conditions) which completes the reduction to constant coefficients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baldi, P.: Periodic solutions of forced Kirchhoff equations. Ann. Scuola Norm. Sup. Pisa. Cl. Sci. (5) 8, 117–141 (2009)

    MATH  MathSciNet  Google Scholar 

  2. Baldi, P.: Periodic solutions of fully nonlinear autonomous equations of Benjamin–Ono type. Ann. I. H. Poincaré (C) Anal. Non Linéaire 30(1), 33–77 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  3. Baldi, P., Berti, M., Montalto, R.: A note on KAM theory for quasi-linear and fully nonlinear KdV. Rend. Lincei Mat. Appl. 24, 437–450 (2013)

    MATH  MathSciNet  Google Scholar 

  4. Bambusi, D., Graffi, S.: Time quasi-periodic unbounded perturbations of Schrödinger operators and KAM methods. Commun. Math. Phys. 219, 465–480 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  5. Berti, M., Biasco, L.: Branching of Cantor manifolds of elliptic tori and applications to PDEs. Commun. Math. Phys 305(3), 741–796 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  6. Berti, M., Biasco, P., Procesi, M.: KAM theory for the Hamiltonian DNLW. Ann. Sci. Éc. Norm. Supér. (4), t. 46 (2013), fascicule 2, 301–272

  7. Berti, M., Biasco, L., Procesi, M.: KAM for the reversible derivative wave equations. Arch. Ration. Mech. Anal (to appear)

  8. Berti, M., Bolle, P.: Cantor families of periodic solutions for completely resonant nonlinear wave equations. Duke Math. J. 134, 359–419 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  9. Berti, M., Bolle, P.: Quasi-periodic solutions with Sobolev regularity of NLS on \(\mathbb{T}^d\) with a multiplicative potential. Eur. J. Math. 15, 229–286 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  10. Berti, M., Bolle, P.: Sobolev quasi periodic solutions of multidimensional wave equations with a multiplicative potential. Nonlinearity 25, 2579–2613 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  11. Berti, M., Bolle, P., Procesi, M.: An abstract Nash–Moser theorem with parameters and applications to PDEs. Ann. I. H. Poincaré 27, 377–399 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  12. Bourgain, J.: Construction of quasi-periodic solutions for Hamiltonian perturbations of linear equations and applications to nonlinear PDE. Int. Math. Res. Notices, no. 11 (1994)

  13. Bourgain, J.: Quasi-periodic solutions of Hamiltonian perturbations of \(2D\) linear Schrödinger equations. Ann. Math. 148, 363–439 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  14. Bourgain, J.: Periodic solutions of nonlinear wave equations, Harmonic analysis and partial differential equations. Chicago Lectures in Math., pp. 69–97. Univ. Chicago Press, Chicago (1999)

  15. Bourgain, J.: Green’s function estimates for lattice Schrödinger operators and applications. In: Annals of Mathematics Studies, vol. 158. Princeton University Press, Princeton (2005)

    Google Scholar 

  16. Craig, W.: Problèmes de petits diviseurs dans les équations aux dérivées partielles. In: Panoramas et Synthèses, vol. 9. Société Mathématique de France, Paris (2000)

    Google Scholar 

  17. Craig, W., Wayne, C.E.: Newton’s method and periodic solutions of nonlinear wave equation. Commun. Pure Appl. Math. 46, 1409–1498 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  18. Delort, J.-M.: A quasi-linear Birkhoff normal forms method. Application to the quasi-linear Klein–Gordon equation on \(\mathbb{S}^1\). Astérisque 341 (2012)

  19. Eliasson, L.H., Kuksin, S.: KAM for non-linear Schrödinger equation. Ann. Math. 172, 371–435 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  20. Eliasson, L.H., Kuksin, S.: On reducibility of Schrödinger equations with quasiperiodic in time potentials. Commun. Math. Phys. 286, 125–135 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  21. Geng, J., Xu, X., You, J.: An infinite dimensional KAM theorem and its application to the two dimensional cubic Schrödinger equation. Adv. Math. 226(6), 5361–5402 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  22. Gentile, G., Procesi, M.: Periodic solutions for a class of nonlinear partial differential equations in higher dimension. Commun. Math. Phys. 289(3), 863–906 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  23. Grebert, B., Thomann, L.: KAM for the quantum harmonic oscillator. Commun. Math. Phys. 307(2), 383–427 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  24. Iooss, G., Plotnikov, P.I., Toland, J.F.: Standing waves on an infinitely deep perfect fluid under gravity. Arch. Rational Mech. Anal. 177(3), 367–478 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  25. Iooss, G., Plotnikov, P.I.: Small divisor problem in the theory of three-dimensional water gravity waves. Mem. Am. Math. Soc. 200, no. 940 (2009)

    Google Scholar 

  26. Iooss, G., Plotnikov, P.I.: Asymmetrical three-dimensional travelling gravity waves. Arch. Rational Mech. Anal. 200(3), 789–880 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  27. Kappeler, T., Pöschel, J.: KAM and KdV. Springer, Berlin (2003)

    Book  Google Scholar 

  28. Klainermann, S., Majda, A.: Formation of singularities for wave equations including the nonlinear vibrating string. Commun. Pure Appl. Math. 33, 241–263 (1980)

    Article  Google Scholar 

  29. Kuksin, S.: Hamiltonian perturbations of infinite-dimensional linear systems with imaginary spectrum, Funktsional. Anal. i Prilozhen. 21(3), 22–37, 95 (1987)

    Google Scholar 

  30. Kuksin, S.: A KAM theorem for equations of the Korteweg–de Vries type. Rev. Math. Math Phys. 10(3), 1–64 (1998)

    MATH  MathSciNet  Google Scholar 

  31. Kuksin, S.: Analysis of Hamiltonian PDEs. In: Oxford Lecture Series in Mathematics and its Applications, vol. 19. Oxford University Press, Oxford (2000)

  32. Kuksin, S., Pöschel, J.: Invariant Cantor manifolds of quasi-periodic oscillations for a nonlinear Schrödinger equation. Ann. Math. (2) 143, 149–179 (1996)

    Article  MATH  Google Scholar 

  33. Lax, P.: Development of singularities of solutions of nonlinear hyperbolic partial differential equations. J. Math. Phys. 5, 611–613 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  34. Liu, J., Yuan, X.: Spectrum for quantum Duffing oscillator and small-divisor equation with large-variable coefficient. Commun. Pure Appl. Math. 63(9), 1145–1172 (2010)

    MATH  MathSciNet  Google Scholar 

  35. Liu, J., Yuan, X.: A KAM theorem for hamiltonian partial differential equations with unbounded perturbations. Commun. Math. Phys. 307, 629–673 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  36. Moser, J.: A rapidly convergent iteration method and non-linear partial differential equations-I. Ann. Sc. Norm. Sup. Pisa Cl. Sci. (3) 20(2), 265–315 (1966)

    MATH  Google Scholar 

  37. Pöschel, J.: A KAM-theorem for some nonlinear partial differential equations. Ann. Sci. Norm. Sup. Pisa Cl. Sci. (4) 23, 119–148 (1996)

    MATH  Google Scholar 

  38. Procesi, C., Procesi, M.: A KAM algorithm for the completely resonant nonlinear Schrödinger equation (2012, preprint)

  39. Procesi, M., Xu, X.: Quasi-Töplitz Functions in KAM Theorem. SIAM J. Math. Anal. 45(4), 2148–2181 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  40. Rabinowitz, P.H.: Periodic solutions of nonlinear hyperbolic partial differential equations, Part I. Commun. Pure Appl. Math. 20, 145–205 (1967)

    Article  MATH  MathSciNet  Google Scholar 

  41. Rabinowitz, P.H.: Periodic solutions of nonlinear hyperbolic partial differential equations. Part II. Commun. Pure Appl. Math. 22, 15–39 (1969)

    Article  MATH  MathSciNet  Google Scholar 

  42. Wang, W.M.: Supercritical nonlinear Schrödinger equations I: quasi-periodic solutions (2010, preprint)

  43. Wayne, E.: Periodic and quasi-periodic solutions of nonlinear wave equations via KAM theory. Commun. Math. Phys. 127, 479–528 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  44. Zhang, J., Gao, M., Yuan, X.: KAM tori for reversible partial differential equations. Nonlinearity 24, 1189–1228 (2011)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

We warmly thank W. Craig for many discussions about the reduction approach of the linearized operators and the reversible structure, and P. Bolle for deep observations about the Hamiltonian case. We also thank T. Kappeler, M. Procesi for many useful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Massimiliano Berti.

Additional information

This research was supported by the European Research Council under FP7 and partially by the PRIN2009 grant “Critical Point Theory and Perturbative Methods for Nonlinear Differential Equations”.

Appendix: Tame and Lipschitz estimates

Appendix: Tame and Lipschitz estimates

In this Appendix we present standard tame and Lipschitz estimates for composition of functions and changes of variables which are used in the paper.

Let \( H^s := H^{s}({\mathbb {T}}^d,{\mathbb {C}}) \) (with norm \( \Vert \ \Vert _s \)) and \( W^{s, \infty } := W^{s, \infty }({\mathbb {T}}^d,{\mathbb {C}}) \), \( d \ge 1\).

Lemma 6.1

Let \( s_0 > d/2\). Then

  1. (i)

    Embedding. \(\Vert u \Vert _{L^\infty } \le C(s_0) \Vert u \Vert _{s_0}\) for all \(u \in H^{s_0} \).

  2. (ii)

    Algebra. \(\Vert uv \Vert _{s_0} \le C(s_0) \Vert u \Vert _{s_0} \Vert v \Vert _{s_0}\) for all \(u, v \in H^{s_0}\).

  3. (iii)

    Interpolation. For \(0 \le s_1 \le s \le s_2\), \(s = \lambda s_1 + (1-\lambda ) s_2\),

    $$\begin{aligned} \Vert u \Vert _{s} \le \Vert u \Vert _{s_1}^\lambda \Vert u \Vert _{s_2}^{1-\lambda } , \quad \forall u \in H^{s_2}. \end{aligned}$$
    (6.1)

    Let \( a_0, b_0 \ge 0\) and \( p,q > 0 \). For all \( u \in H^{a_0 + p + q} \), \( v \in H^{b_0 + p + q} \),

    $$\begin{aligned} \Vert u \Vert _{a_0 + p} \Vert v \Vert _{b_0 + q} \le \Vert u \Vert _{a_0 + p + q} \Vert v \Vert _{b_0} + \Vert u \Vert _{a_0} \Vert v \Vert _{b_0 + p + q}. \end{aligned}$$
    (6.2)

    Similarly, for the \(|u|_{s, \infty } := \sum _{|\beta | \le s} | D^\beta u |_{L^\infty } \) norm,

    $$\begin{aligned} | u |_{s, \infty } \le C(s_1, s_2) | u |_{s_1, \infty }^\lambda | u |_{s_2, \infty }^{1-\lambda } , \quad \forall u \in W^{s_2, \infty } , \end{aligned}$$
    (6.3)

    and \( \forall u \in W^{a_0 + p + q, \infty } \), \( v \in W^{b_0 + p + q, \infty } \),

    $$\begin{aligned}&| u |_{a_0 + p, \infty } | v |_{b_0 + q, \infty }\nonumber \\&\quad \le C(a_0, b_0, p,q)\left( | u |_{a_0 + p + q, \infty } | v |_{b_0, \infty } + | u |_{a_0, \infty } | v |_{b_0 + p + q, \infty }\right) . \end{aligned}$$
    (6.4)
  4. (iv)

    Asymmetric tame product. For \(s \ge s_0\),

    $$\begin{aligned} \Vert uv \Vert _s \le C(s_0) \Vert u\Vert _s \Vert v\Vert _{s_0} + C(s) \Vert u\Vert _{s_0} \Vert v \Vert _s , \quad \forall u,v \in H^s. \end{aligned}$$
    (6.5)
  5. (v)

    Asymmetric tame product in \(W^{s,\infty }\). For \(s \ge 0\), \(s \in {\mathbb {N}}\),

    $$\begin{aligned} | uv |_ {s, \infty } \le \tfrac{3}{2} \, | u |_ {L^\infty } |v|_ {s, \infty } + C(s) |u|_ {s, \infty } |v|_ {L^\infty } , \quad \forall u,v \in W^{s,\infty }. \end{aligned}$$
    (6.6)
  6. (vi)

    Mixed norms asymmetric tame product. For \(s \ge 0\), \(s \in {\mathbb {N}}\),

    $$\begin{aligned} \Vert uv \Vert _s \le \tfrac{3}{2} \, |u|_ {L^\infty } \Vert v \Vert _s + C(s)| u |_ {s, \infty } \Vert v \Vert _0 , \quad \forall u \in W^{s,\infty } , \ v \in H^s . \end{aligned}$$
    (6.7)

    If \(u := u(\lambda )\) and \(v := v(\lambda )\) depend in a Lipschitz way on \(\lambda \in \Lambda \subset {\mathbb {R}}\), all the previous statements hold if we replace the norms \(\Vert \cdot \Vert _s\), \(\vert \cdot \vert _ {s, \infty } \) with the norms \(\Vert \cdot \Vert _s^{\mathrm{{Lip}(\gamma )}}\), \(\vert \cdot \vert _ {s, \infty }^{\mathrm{{Lip}(\gamma )}}\).

Proof

The interpolation estimate (6.1) for the Sobolev norm (1.5) follows by Hölder inequality, see also [36], page 269. Let us prove (6.2). Let \( a = a_0 \lambda + a_1 (1-\lambda ) \), \( b = b_0 (1-\lambda ) + b_1 \lambda \), \( \lambda \in [0,1] \). Then (6.1) implies

$$\begin{aligned} \Vert u \Vert _a \Vert v \Vert _b&\le \left( \Vert u \Vert _{a_0} \Vert v \Vert _{b_1} \right) ^{\lambda } \left( \Vert u \Vert _{a_1} \Vert v \Vert _{b_0} \right) ^{1-\lambda }\nonumber \\&\le \lambda \Vert u \Vert _{a_0} \Vert v \Vert _{b_1} + (1- \lambda ) \Vert u \Vert _{a_1} \Vert v \Vert _{b_0} \end{aligned}$$
(6.8)

by Young inequality. Applying (6.8) with \( a = a_0 + p \), \( b = b_0 + q \), \( a_1 = a_0 + p + q \), \( b_1 = b_0 + p + q \), then \( \lambda = q \slash (p+q) \) and we get (6.2). Also the interpolation estimates (6.3) are classical (see [11]) and (6.3) implies (6.4) as above.

\((iv)\): see the Appendix of [11]. \((v)\): we write, in the standard multi-index notation,

$$\begin{aligned} D^\alpha (uv) = \sum _{\beta +\gamma = \alpha } C_{\beta , \gamma } (D^\beta u) (D^\gamma v) = u D^\alpha v + \sum _{\beta +\gamma = \alpha , \beta \ne 0} C_{\beta , \gamma } (D^\beta u) (D^\gamma v) .\nonumber \\ \end{aligned}$$
(6.9)

Using \( |(D^\beta u)(D^\gamma v)|_ {L^\infty } \le |D^\beta u|_ {L^\infty } |D^\gamma v|_ {L^\infty } \le |u|_{|\beta |, \infty } |v|_{|\gamma |, \infty } \), and the interpolation inequality (6.3) for every \( \beta \ne 0\) with \(\lambda := |\beta | / |\alpha | \in (0,1]\) (where \( |\alpha | \le s \)), we get, for any \(K > 0\),

$$\begin{aligned} C_{\beta , \gamma } |D^\beta u|_ {L^\infty } |D^\gamma v|_ {L^\infty }&\le C_{\beta , \gamma } C(s) \left( |v|_{L^\infty } |u|_ {s, \infty } \right) ^{\lambda } \left( |v|_ {s, \infty } |u|_ {L^\infty } \right) ^{1 - \lambda } \nonumber \\&= \frac{C(s)}{K} \big [ (K C_{\beta , \gamma })^{\frac{1}{\lambda }} |v|_ {L^\infty } |u|_ {s, \infty } \big ]^{\lambda } \left( |v|_ {s, \infty } |u|_ {L^\infty } \right) ^{1 - \lambda } \nonumber \\&\le \frac{C(s)}{K} \, \big \{ (K C_{\beta , \gamma })^{\frac{|\alpha |}{|\beta |}} |v|_ {L^\infty } |u|_ {s, \infty } + |v|_ {s, \infty } |u|_ {L^\infty } \big \}.\quad \end{aligned}$$
(6.10)

Then (6.6) follows by (6.9), (6.10) taking \( K := K(s) \) large enough. \((vi)\): same proof as \((v)\), using the elementary inequality \(\Vert (D^\beta u)(D^\gamma v) \Vert _0 \le |D^\beta u|_{L^\infty } \Vert D^\gamma v \Vert _0 \). \(\square \)

We now recall classical tame estimates for composition of functions, see [36], section 2, pages 272–275, and [40, 41]-I, Lemma 7 in the Appendix, pages 202–203.

A function \( f : {\mathbb {T}}^d \times B_1 \rightarrow {\mathbb {C}}\), where \(B_1 := \{ y \in {\mathbb {R}}^m : |y| < 1\} \), induces the composition operator

$$\begin{aligned} \tilde{f}(u)(x) := f(x,u(x),Du(x),\ldots ,D^p u(x)) \end{aligned}$$
(6.11)

where \(D^k u(x)\) denotes the partial derivatives \(\partial _x^\alpha u(x)\) of order \(|\alpha |=k\) (the number \( m \) of \( y \)-variables depends on \(p, d\)).

Lemma 6.2

(Composition of functions) Assume \( f \in C^r ({\mathbb {T}}^d \times B_1)\). Then

  1. (i)

    For all \( u \in H^{r+p} \) such that \( |u |_{p, \infty } < 1 \), the composition operator (6.11) is well defined and

    $$\begin{aligned} \Vert \tilde{f}(u) \Vert _r \le C \Vert f \Vert _{C^r} (\Vert u\Vert _{r+p} + 1) \end{aligned}$$

    where the constant \(C \) depends on \( r,d,p \). If \( f \in C^{r+2} \), then, for all \( |u|_{p, \infty } \), \( | h |_{p, \infty } < 1 / 2 \),

    $$\begin{aligned} \big \Vert \tilde{f}(u+h) - \tilde{f} (u) \big \Vert _r&\le C \Vert f \Vert _{C^{r+1}} \, ( \Vert h \Vert _{r+p} + | h |_{p,\infty } \Vert u \Vert _{r+p}) , \\ \big \Vert \tilde{f}(u+h) - \tilde{f} (u) - \tilde{f}'(u) [h] \big \Vert _r&\le C \Vert f \Vert _{C^{r+2}} \, | h |_{p,\infty } ( \Vert h \Vert _{r+p} \!+\! | h |_{p,\infty } \Vert u \Vert _{r+p}). \end{aligned}$$
  2. (ii)

    The previous statement also holds replacing \(\Vert \ \Vert _r\) with the norms \(| \ |_{r, \infty } \).

Lemma 6.3

(Lipschitz estimate on parameters) Let \(d \in {\mathbb {N}}\), \(d/2 < s_0 \le s\), \(p \ge 0\), \(\gamma >0\). Let \( F \) be a \( C^1 \)-map satisfying the tame estimates: \( \forall \Vert u \Vert _{s_0+p} \le 1 \), \( h \in H^{s+p} \),

$$\begin{aligned} \Vert F(u) \Vert _s&\le C(s) (1 + \Vert u \Vert _{s+p}) , \end{aligned}$$
(6.12)
$$\begin{aligned} \Vert \partial _u F(u)[h] \Vert _s&\le C(s) (\Vert h \Vert _{s+p} + \Vert u \Vert _{s+p} \Vert h \Vert _{s_0 + p} ). \end{aligned}$$
(6.13)

For \(\Lambda \subset {\mathbb {R}}\), let \( u(\lambda ) \) be a Lipschitz family of functions with \( \Vert u \Vert _{s_0 +p}^{\mathrm{{Lip}(\gamma )}} \le 1 \) (see (2.2)). Then

$$\begin{aligned} \Vert F(u) \Vert _s^\mathrm{{Lip}(\gamma )}\le C(s) \left( 1 + \Vert u \Vert _{s+p}^\mathrm{{Lip}(\gamma )}\right) . \end{aligned}$$

The same statement also holds when all the norms \(\Vert \ \Vert _s \) are replaced by \(| \ |_{s, \infty } \).

Proof

By (6.12) we get \( \sup _\lambda \Vert F(u(\lambda )) \Vert _s \le C(s) ( 1 + \Vert u \Vert _{s+p}^{\mathrm{{Lip}(\gamma )}}) \). Then, denoting \( u_1 := u(\lambda _1)\) and \(h := u(\lambda _2) - u(\lambda _1)\), we have

$$\begin{aligned}&\Vert F(u_2) - F(u_1) \Vert _s \\&\quad \ \le \quad \int _0^1 \Vert \partial _u F(u_1 + t (u_2-u_1))[h] \, \Vert _s \, dt\\&\quad \mathop {\le _{s}}\limits ^{(6.13)} \Vert h \Vert _{s+p} + \Vert h \Vert _{s_0 + p} \int _0^1 \left( (1-t) \Vert u(\lambda _1) \Vert _{s+p} + t \Vert u(\lambda _2) \Vert _{s+p} \right) \, dt \end{aligned}$$

whence

$$\begin{aligned}&\gamma \, {\mathop {\mathop {\sup }\limits _{\lambda _1, \lambda _2 \in \Lambda }}\limits _{\lambda _1 \ne \lambda _2}} \frac{\Vert F(u(\lambda _1)) - F(u(\lambda _2)) \Vert _{s}}{|\lambda _1 - \lambda _2|}\\&\quad \le _s \Vert u \Vert _{s+p}^\mathrm{{Lip}(\gamma )}+ \Vert u \Vert _{s_0 + p}^\mathrm{{Lip}(\gamma )}\sup _{\lambda _1, \lambda _2} \left( \, \Vert u(\lambda _1) \Vert _{s+p} + \, \Vert u(\lambda _2) \Vert _{s+p} \right) \\&\quad \le _s \Vert u \Vert _{s+p}^\mathrm{{Lip}(\gamma )}+ \Vert u \Vert _{s_0 + p}^\mathrm{{Lip}(\gamma )}\Vert u \Vert _{s+p}^\mathrm{{Lip}(\gamma )}\le C(s) \Vert u \Vert _{s+p}^\mathrm{{Lip}(\gamma )}, \end{aligned}$$

because \( \Vert u \Vert _{s_0 +p}^{\mathrm{{Lip}(\gamma )}} \le 1 \), and the lemma follows. \(\square \)

The next lemma is also classical, see for example [24], Appendix G. The present version is proved in [2], except for the part on the Lipschitz dependence on a parameter, which is proved here below.

Lemma 6.4

(Change of variable) Let \(p:{\mathbb {R}}^d \rightarrow {\mathbb {R}}^d\) be a \(2\pi \)-periodic function in \(W^{s,\infty }\), \( s \ge 1\), with \( |p|_{1, \infty } \le 1/2 \). Let \(f(x) = x + p(x)\). Then:

  1. (i)

    \(f\) is invertible, its inverse is \(f^{-1}(y) = g(y) = y + q(y)\) where \(q\) is \( 2 \pi \)-periodic, \(q \in W^{s,\infty }({\mathbb {T}}^d,{\mathbb {R}}^d)\), and \(|q|_{s, \infty } \le C |p|_{s, \infty } \). More precisely,

    $$\begin{aligned} | q |_{L^\infty } \!=\! | p |_{L^\infty }, \quad \! | Dq |_{L^\infty } \le 2 | Dp |_{L^\infty } , \quad \! | Dq |_{s-1, \infty } \le C | Dp |_{s-1, \infty }.\quad \quad \end{aligned}$$
    (6.14)

    where the constant \(C\) depends on \(d, s\). Moreover, suppose that \(p = p_\lambda \) depends in a Lipschitz way by a parameter \(\lambda \in \Lambda \subset {\mathbb {R}}\), and suppose, as above, that \(|D_x p_\lambda |_ {L^\infty } \le 1/2\) for all \(\lambda \). Then \(q = q_\lambda \) is also Lipschitz in \(\lambda \), and

    $$\begin{aligned} |q|_{s, \infty }^{\mathrm{{Lip}(\gamma )}} \!\le \! C \left( |p|_ {s, \infty } ^{\mathrm{{Lip}(\gamma )}} \!+\! \big \{ \sup _{\lambda \in \Lambda } |p_\lambda |_{s+1, \infty } \big \} \, |p|_{L^\infty }^{\mathrm{{Lip}(\gamma )}} \right) \!\le \! C |p|_{s+1, \infty }^{\mathrm{{Lip}(\gamma )}}.\quad \quad \end{aligned}$$
    (6.15)

    The constant \(C\) depends on \(d, s \) (and is independent of \(\gamma \)).

  2. (ii)

    If \(u \in H^s ({\mathbb {T}}^d,{\mathbb {C}})\), then \(u\circ f(x) = u(x+p(x))\) is also in \(H^s \), and, with the same \(C\) as in \((i)\),

    $$\begin{aligned} \Vert u \circ f \Vert _s&\le C (\Vert u\Vert _s + |Dp|_{s-1, \infty } \Vert u\Vert _1), \end{aligned}$$
    (6.16)
    $$\begin{aligned} \Vert u \circ f - u \Vert _s&\le C \left( | p |_{L^\infty } \Vert u \Vert _{s + 1} + |p|_{s, \infty } \Vert u \Vert _{2} \right) , \end{aligned}$$
    (6.17)
    $$\begin{aligned} \Vert u \circ f \Vert _{s}^{\mathrm{{Lip}(\gamma )}}&\le C \, \left( \Vert u \Vert _{s+1}^{\mathrm{{Lip}(\gamma )}} + |p|_{s, \infty }^{\mathrm{{Lip}(\gamma )}} \Vert u \Vert _2^{\mathrm{{Lip}(\gamma )}} \right) . \end{aligned}$$
    (6.18)

    (6.16), (6.17) (6.18) also hold for \(u \circ g\).

  3. (iii)

    Part \((ii)\) also holds with \(\Vert \cdot \Vert _k\) replaced by \(| \cdot |_{k, \infty }\), and \(\Vert \cdot \Vert _{s}^{\mathrm{{Lip}(\gamma )}}\) replaced by \(\vert \cdot \vert _{s, \infty }^{\mathrm{{Lip}(\gamma )}}\), namely

    $$\begin{aligned} | u \circ f |_{s, \infty }&\le C (|u|_{s, \infty } + |Dp|_{s-1, \infty } |u|_{1, \infty }), \end{aligned}$$
    (6.19)
    $$\begin{aligned} | u \circ f |_{s, \infty }^\mathrm{{Lip}(\gamma )}&\le C (|u|_{s+1, \infty }^\mathrm{{Lip}(\gamma )}+ |Dp|_{s-1, \infty }^\mathrm{{Lip}(\gamma )}|u|_{2, \infty }^\mathrm{{Lip}(\gamma )}). \end{aligned}$$
    (6.20)

Proof

The bounds (6.14), (6.16) and (6.19) are proved in [2], Appendix B. Let us prove (6.15). Denote \(p_\lambda (x) := p(\lambda ,x)\), and similarly for \(q_\lambda , g_\lambda , f_\lambda \). Since \(y = f_\lambda (x) = x + p_\lambda (x)\) if and only if \(x = g_\lambda (y) = y + q_\lambda (y)\), one has

$$\begin{aligned} q_\lambda (y) + p_\lambda (g_\lambda (y)) = 0 , \quad \forall \lambda \in \Lambda , \ y \in {\mathbb {T}}^d. \end{aligned}$$
(6.21)

Let \(\lambda _{1}, \lambda _{2} \in \Lambda \), and denote, in short, \(q_1 = q_{\lambda _1}\), \(q_2 = q_{\lambda _2}\), and so on. By (6.21),

$$\begin{aligned} q_1 - q_2&= p_2 \circ g_2 - p_1 \circ g_1 = (p_2 \circ g_2 - p_1 \circ g_2) + (p_1 \circ g_2 - p_1 \circ g_1) \nonumber \\&= G_2 (p_2 - p_1) + \int _1^2 G_t (D_{x} p_1) \, dt \, (q_2 - q_1) \end{aligned}$$
(6.22)

where \( G_2 h := h \circ g_2 \), \( G_t h := h \circ \left( g_1 + (t-1) [g_2 - g_1] \right) \), \( t \in [1,2]\). By (6.22), the \( L^\infty \) norm of \((q_2 - q_1)\) satisfies

$$\begin{aligned} |q_2 - q_1|_{L^\infty }&\le |G_2 (p_2 - p_1)|_{L^\infty } + \int _1^2 |G_t (D_{x} p_1)|_{L^\infty } \, dt \, |q_2 - q_1|_{L^\infty } \\&\le |p_2 - p_1|_{L^\infty }+ |D_{x} p_1|_{L^\infty } \, |q_2 - q_1|_{L^\infty } \end{aligned}$$

whence, using the assumption \(|D_{x} p_1|_{L^\infty } \le 1/2\), we get \( |q_2 - q_1|_{L^\infty } \le 2 |p_2 - p_1|_{L^\infty } \).

By (6.22), using (6.6), the \(W^{s,\infty }\) norm of \((q_2 - q_1)\), for \(s \ge 0\), satisfies

$$\begin{aligned} |q_1 - q_2|_{s, \infty }&\le |G_2 (p_2 - p_1)|_{s, \infty } + \frac{3}{2}\, \int _1^2 | G_t (D_{x} p_1)|_{L^\infty } \, dt \, |q_2 - q_1|_{s, \infty }\\&+ C(s) \int _1^2 | G_t (D_{x} p_1)|_{s, \infty } \, dt \, |q_2 - q_1|_{L^\infty }. \end{aligned}$$

Since \(|G_t (D_{x} p_1)|_{L^\infty } = |D_x p_1|_{L^\infty } \le 1/2\),

$$\begin{aligned} \left( 1 - \frac{3}{4} \right) |q_2 - q_1|_{s, \infty } \le |G_2 (p_2 - p_1)|_{s, \infty } + C(s) \!\int _1^2 |G_t (D_{x} p_1)|_{s, \infty } \, dt \, |q_2 - q_1|_{L^\infty }. \end{aligned}$$

Using \( |q_2 - q_1|_{L^\infty } \le 2 |p_2 - p_1|_{L^\infty } \), (6.19), (6.4) and (6.14),

$$\begin{aligned} |q_2 - q_1|_{s, \infty } \le C(s) \left( |p_2 - p_1|_{s, \infty } + \bigg \{ \sup _{\lambda \in \Lambda } |p_\lambda |_{s+1, \infty } \bigg \} |p_2 - p_1|_{L^\infty } \right) \end{aligned}$$

and (6.15) follows. The proof of (6.17), (6.18), (6.20) may be obtained similarly. \(\square \)

Lemma 6.5

(Composition) Suppose that for all \(\Vert u \Vert _{s_{0}+ \mu _i} \le 1\) the operator \(\mathcal{Q}_i(u)\) satisfies

$$\begin{aligned} \Vert \mathcal{Q}_i h \Vert _{s} \le C(s) \left( \Vert h \Vert _{s + \tau _i} + \Vert u \Vert _{s + \mu _i} \Vert h \Vert _{s_{0}+\tau _i} \right) , \quad i = 1, 2. \end{aligned}$$
(6.23)

Let \(\tau := \mathrm{max}\{ \tau _1, \tau _2 \}\), \(\mu := \mathrm{max}\{ \mu _1, \mu _2 \}\). Then, for all

$$\begin{aligned} \Vert u \Vert _{s_{0}+ \tau + \mu } \le 1 , \end{aligned}$$
(6.24)

the composition operator \(\mathcal{Q} := \mathcal{Q}_{1} \circ \mathcal{Q}_2\) satisfies the tame estimate

$$\begin{aligned} \Vert \mathcal{Q} h \Vert _{s} \le C(s) \left( \Vert h \Vert _{s + \tau _1 + \tau _2} + \Vert u \Vert _{s + \tau + \mu } \Vert h \Vert _{s_0 + \tau _1 + \tau _2}\right) . \end{aligned}$$
(6.25)

Moreover, if \(\mathcal{Q}_1\), \(\mathcal{Q}_2\), \(u\) and \(h\) depend in a Lipschitz way on a parameter \(\lambda \), then (6.25) also holds with \(\Vert \cdot \Vert _s\) replaced by \(\Vert \cdot \Vert _{s}^{\mathrm{{Lip}(\gamma )}}\).

Proof

Apply the estimates for (6.23) to \(\mathcal{Q}_1\) first, then to \(\mathcal{Q}_2\), using condition (6.24).   \(\square \)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baldi, P., Berti, M. & Montalto, R. KAM for quasi-linear and fully nonlinear forced perturbations of Airy equation. Math. Ann. 359, 471–536 (2014). https://doi.org/10.1007/s00208-013-1001-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00208-013-1001-7

Mathematics Subject Classification (2010)

Navigation