Skip to main content
Log in

Isotropic LQC and LQC-inspired models with a massless scalar field as generalised Brans–Dicke theories

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

We explore whether generalised Brans–Dicke theories, which have a scalar field \(\Phi \) and a function \(\omega (\Phi )\), can be the effective actions leading to the effective equations of motion of the LQC and the LQC-inspired models, which have a massless scalar field \(\sigma \) and a function f(m). We find that this is possible for isotropic cosmology. We relate the pairs \((\sigma , f)\) and \((\Phi , \omega )\) and, using examples, illustrate these relations. We find that near the bounce of the LQC evolutions for which \(f(m) = sin \; m\), the corresponding field \(\Phi \rightarrow 0\) and the function \(\omega (\Phi ) \propto \Phi ^2\). We also find that the class of generalised Brans–Dicke theories, which we had found earlier to lead to non singular isotropic evolutions, may be written as an LQC-inspired model. The relations found here in the isotropic cases do not apply to the anisotropic cases, which perhaps require more general effective actions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. In the following, the convention of summing over repeated indices is not always applicable. Hence we will write explicitly the indices to be summed over.

  2. See the review [13] for a complete description of the various LQG/C terms and concepts mentioned here and in the following.

  3. In LQC, \((3 + 1)\) dimensional effective actions have been constructed in [19,20,21,22,23,24] by generalising Einstein’s term R to F(R) and finding an appropriate function F which will give the isotropic LQC evolution. Any F(R)-theory, including that for LQC, can be written as a scalar–tensor theory with the Brans–Dicke constant \(\omega = 0\) and with a potential that depends on F [16,17,18]. Similar approach may also work for the present \((d + 1)\) dimensional LQC-inspired models for any arbitrary function \(f \;\), but we will not pursue it in this paper.

References

  1. Ashtekar, A.: New variables for classical and quantum gravity. Phys. Rev. Lett. 57, 2244 (1986). https://doi.org/10.1103/PhysRevLett.57.2244

    Article  ADS  MathSciNet  Google Scholar 

  2. Ashtekar, A.: New Hamiltonian formulation of general relativity. Phys. Rev. D 36, 1587 (1987). https://doi.org/10.1103/PhysRevD.36.1587

    Article  ADS  MathSciNet  Google Scholar 

  3. Bojowald, M.: Absence of singularity in loop quantum cosmology. Phys. Rev. Lett. 86, 5227 (2001). https://doi.org/10.1103/PhysRevLett.86.5227. arXiv:gr-qc/0102069

    Article  ADS  MathSciNet  Google Scholar 

  4. Bojowald, M.: The Inverse scale factor in isotropic quantum geometry. Phys. Rev. D 64, 084018 (2001). https://doi.org/10.1103/PhysRevD.64.084018. arXiv:gr-qc/0105067

    Article  ADS  MathSciNet  Google Scholar 

  5. Bojowald, M.: Isotropic loop quantum cosmology. Class. Quant. Gravit. 19, 2717 (2002). https://doi.org/10.1088/0264-9381/19/10/313. arXiv:gr-qc/0202077

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Bojowald, M.: Homogeneous loop quantum cosmology. Class. Quant. Gravit. 20, 2595 (2003). https://doi.org/10.1088/0264-9381/20/13/310. arXiv:gr-qc/0303073

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Ashtekar, A., Bojowald, M., Lewandowski, J.: Mathematical structure of loop quantum cosmology. Adv. Theor. Math. Phys. 7, 233 (2003). https://doi.org/10.4310/ATMP.2003.v7.n2.a2. arXiv:gr-qc/0304074

    Article  MathSciNet  Google Scholar 

  8. Ashtekar, A., Pawlowski, T., Singh, P.: Quantum nature of the big bang. Phys. Rev. Lett. 96, 141301 (2006). https://doi.org/10.1103/PhysRevLett.96.141301. arXiv:gr-qc/0602086

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Ashtekar, A., Pawlowski, T., Singh, P.: Quantum nature of the big bang: improved dynamics. Phys. Rev. D 74, 084003 (2006). https://doi.org/10.1103/PhysRevD.74.084003. arXiv:gr-qc/0607039

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Varadarajan, M.: On the resolution of the big bang singularity in isotropic loop quantum cosmology. Class. Quant. Gravit. 26, 085006 (2009). https://doi.org/10.1088/0264-9381/26/8/085006. arXiv:0812.0272 [gr-qc]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Ashtekar, A., Wilson-Ewing, E.: Loop quantum cosmology of Bianchi I models. Phys. Rev. D 79, 083535 (2009). https://doi.org/10.1103/PhysRevD.79.083535. arXiv:0903.3397 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  12. Date, G.: Lectures on LQG/LQC. arXiv:1004.2952 [gr-qc]

  13. Ashtekar, A., Singh, P.: Loop quantum cosmology: a status report. Class. Quant. Grav. 28, 213001 (2011). https://doi.org/10.1088/0264-9381/28/21/213001. arXiv:1108.0893 [gr-qc]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Kalyana Rama, S.: A class of LQC-inspired models for homogeneous, anisotropic cosmology in higher dimensional early universe. Gen. Relativ. Gravit. 48, 155 (2016). https://doi.org/10.1007/s10714-016-2150-2. arXiv:1608.03231 [gr-qc]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Kalyana Rama, S.: Variety of \((d + 1)\) dimensional cosmological evolutions with and without bounce in a class of LQC-inspired models. Gen. Relativ. Gravit. 49, 113 (2017). https://doi.org/10.1007/s10714-017-2277-9. arXiv:1706.08220 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  16. Sotiriou, T.P., Faraoni, V.: \(f(R)\) theories of gravity. Rev. Mod. Phys. 82, 451 (2010). https://doi.org/10.1103/RevModPhys.82.451. arXiv:0805.1726 [gr-qc]

    Article  ADS  MATH  Google Scholar 

  17. De Felice, A., Tsujikawa, S.: \(f(R)\) theories. Living Rev. Relativ. 13, 3 (2010). https://doi.org/10.12942/lrr-2010-3. arXiv:1002.4928 [gr-qc]

    Article  ADS  MATH  Google Scholar 

  18. Nojiri, S., Odintsov, S.D., Oikonomou, V.K.: Modified gravity theories on a nutshell: inflation, bounce and late-time evolution. Phys. Rep. 692, 1 (2017). https://doi.org/10.1016/j.physrep.2017.06.001. arXiv:1705.11098 [gr-qc]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Olmo, G.J., Singh, P.: Effective action for loop quantum cosmology a la palatini. JCAP 01, 030 (2009). https://doi.org/10.1088/1475-7516/2009/01/030. arXiv:0806.2783 [gr-qc]

    Article  ADS  Google Scholar 

  20. Sotiriou, T.P.: Covariant effective action for loop quantum cosmology from order reduction. Phys. Rev. D 79, 044035 (2009). https://doi.org/10.1103/PhysRevD.79.044035. arXiv:0811.1799 [gr-qc]

    Article  ADS  Google Scholar 

  21. Date, G., Sengupta, S.: Effective actions from loop quantum cosmology: correspondence with higher curvature gravity. Class. Quant. Gravit. 26, 105002 (2009). https://doi.org/10.1088/0264-9381/26/10/105002. arXiv:0811.4023 [gr-qc]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Barragan, C., Olmo, G.J., Sanchis-Alepuz, H.: Bouncing cosmologies in palatini \(f(R)\) gravity. Phys. Rev. D 80, 024016 (2009). https://doi.org/10.1103/PhysRevD.80.024016. arXiv:0907.0318 [gr-qc]

    Article  ADS  Google Scholar 

  23. Helling, R.C.: Higher curvature counter terms cause the bounce in loop cosmology. arXiv:0912.3011 [gr-qc]

  24. Barragan, C., Olmo, G.J.: Isotropic and anisotropic bouncing cosmologies in palatini gravity. Phys. Rev. D 82, 084015 (2010). https://doi.org/10.1103/PhysRevD.82.084015. arXiv:1005.4136 [gr-qc]

    Article  ADS  Google Scholar 

  25. Will, C.M.: Theory and Experiment in Gravitational Physics. Cambridge University Press, Cambridge (1993)

    Book  MATH  Google Scholar 

  26. Dicke, R.H.: Principle of equivalence and the weak interactions. Rev. Mod. Phys. 29, 363 (1957). https://doi.org/10.1103/RevModPhys.29.355

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Dicke, R.H.: Gravitation without a principle of equivalence. Rev. Mod. Phys. 29, 363 (1957). https://doi.org/10.1103/RevModPhys.29.363

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Dicke, R.H.: Mach’s principle and invariance under transformation of units. Phys. Rev. 125, 2163 (1962). https://doi.org/10.1103/PhysRev.125.2163

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Brans, C., Dicke, R.H.: Mach’s principle and a relativistic theory of gravitation. Phys. Rev. 124, 925 (1961). https://doi.org/10.1103/PhysRev.124.925

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Damour, T., Polyakov, A.M.: The string dilaton and a least coupling principle. Nucl. Phys. B 423, 532 (1994). https://doi.org/10.1016/0550-3213(94)90143-0. arXiv:hep-th/9401069

    Article  ADS  MathSciNet  MATH  Google Scholar 

  31. Damour, T., Polyakov, A.M.: String theory and gravity. Gen. Relativ. Gravit. 26, 1171 (1994). https://doi.org/10.1007/BF02106709. arXiv:gr-qc/9411069

    Article  ADS  MathSciNet  Google Scholar 

  32. Husain, V., Pawlowski, T.: Time and a physical Hamiltonian for quantum gravity. Phys. Rev. Lett. 108, 141301 (2012). https://doi.org/10.1103/PhysRevLett.108.141301. arXiv:1108.1145 [gr-qc]

    Article  ADS  Google Scholar 

  33. Husain, V., Pawlowski, T.: Dust reference frame in quantum cosmology. Class. Quant. Gravit. 28, 225014 (2011). https://doi.org/10.1088/0264-9381/28/22/225014. arXiv:1108.1147 [gr-qc]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Pawlowski, T., Pierini, R., Wilson-Ewing, E.: Loop quantum cosmology of a radiation-dominated flat FLRW universe. Phys. Rev. D 90, 123538 (2014). https://doi.org/10.1103/PhysRevD.90.123538. arXiv:1404.4036 [gr-qc]

    Article  ADS  Google Scholar 

  35. Rama, S.K.: Some cosmological consequences of nontrivial PPN parameters beta and gamma. Phys. Lett. B 373, 282 (1996). https://doi.org/10.1016/0370-2693(96)00146-3. arXiv:hep-th/9506020

    Article  ADS  Google Scholar 

  36. Rama, S.K.: Singularity free (homogeneous isotropic) universe in graviton-dilaton models. Phys. Rev. Lett. 78, 1620 (1997). https://doi.org/10.1103/PhysRevLett.78.1620. arXiv:hep-th/9608026

    Article  ADS  Google Scholar 

  37. Rama, S.K.: Early universe evolution in graviton-dilaton models. Phys. Rev. D 56, 6230 (1997). https://doi.org/10.1103/PhysRevD.56.6230. arXiv:hep-th/9611223

    Article  ADS  Google Scholar 

  38. Rama, S.K.: Can string theory avoid cosmological singularities? Phys. Lett. B 408, 91 (1997). https://doi.org/10.1016/S0370-2693(97)00795-8. arXiv:hep-th/9701154

    Article  ADS  MathSciNet  Google Scholar 

  39. Bagchi, A., Rama, S.K.: Cosmology and static spherically symmetric solutions in D-dimensional scalar tensor theories: some novel features. Phys. Rev. D 70, 104030 (2004). https://doi.org/10.1103/PhysRevD.70.104030. arXiv:gr-qc/0408030

    Article  ADS  MathSciNet  Google Scholar 

  40. Bodendorfer, N., Thiemann, T., Thurn, A.: New variables for classical and quantum gravity in all dimensions I. Hamiltonian analysis. Class. Quant. Gravit. 30, 045001 (2013). https://doi.org/10.1088/0264-9381/30/4/045001. arXiv:1105.3703 [gr-qc]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. Bodendorfer, N., Thiemann, T., Thurn, A.: New variables for classical and quantum gravity in all dimensions II. Lagrangian analysis. Class. Quant. Gravit. 30, 045002 (2013). https://doi.org/10.1088/0264-9381/30/4/045002. arXiv:1105.3704 [gr-qc]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. Bodendorfer, N., Thiemann, T., Thurn, A.: New variables for classical and quantum gravity in all dimensions III. Quantum theory. Class. Quant. Gravit. 30, 045003 (2013). https://doi.org/10.1088/0264-9381/30/4/045003. arXiv:1105.3705 [gr-qc]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. Bodendorfer, N.: Black hole entropy from loop quantum gravity in higher dimensions. Phys. Lett. B 726, 887 (2013). https://doi.org/10.1016/j.physletb.2013.09.043. arXiv:1307.5029 [gr-qc]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. Rama, S.K., Ghosh, S.: Short distance repulsive gravity as a consequence of nontrivial PPN parameters beta and gamma. Phys. Lett. B 383, 31 (1996). https://doi.org/10.1016/0370-2693(96)00818-0

    Article  ADS  Google Scholar 

  45. Rama, S.K., Ghosh, S.: Short distance repulsive gravity as a consequence of nontrivial PPN parameters beta and gamma. Phys. Lett. B 384, 50 (1996). https://doi.org/10.1016/0370-2693(96)00706-X. arXiv:hep-th/9505167

    Article  ADS  Google Scholar 

  46. Chamseddine, A.H., Mukhanov, V.: Resolving cosmological singularities. JCAP 03, 009 (2017). https://doi.org/10.1088/1475-7516/2017/03/009. arXiv:1612.05860 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  47. Bodendorfer, N., Schäfer, A. Schliemann, J.: On the canonical structure of general relativity with a limiting curvature and its relation to loop quantum gravity. arXiv:1703.10670 [gr-qc]

  48. Langlois, D., Liu, H., Noui, K., Wilson-Ewing, E.: Effective loop quantum cosmology as a higher-derivative scalar–tensor theory. Class. Quant. Grav. 34, 225004 (2017). https://doi.org/10.1088/1361-6382/aa8f2f. arXiv:1703.10812 [gr-qc]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  49. Ben Achour, J., Lamy, F., Liu, H., Noui, K.: Non-singular black holes and the limiting curvature mechanism: a Hamiltonian perspective. arXiv:1712.03876 [gr-qc]

Download references

Acknowledgements

We thank the referee for her/his suggestions and for pointing out the references [32,33,34, 47, 48].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Kalyana Rama.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rama, S.K. Isotropic LQC and LQC-inspired models with a massless scalar field as generalised Brans–Dicke theories. Gen Relativ Gravit 50, 56 (2018). https://doi.org/10.1007/s10714-018-2378-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-018-2378-0

Keywords

Navigation