Skip to main content
Log in

Variety of \((d + 1)\) dimensional cosmological evolutions with and without bounce in a class of LQC-inspired models

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

The bouncing evolution of an universe in Loop Quantum Cosmology can be described very well by a set of effective equations, involving a function sin x. Recently, we have generalised these effective equations to \((d + 1)\) dimensions and to any function f(x). Depending on f(x) in these models inspired by Loop Quantum Cosmology, a variety of cosmological evolutions are possible, singular as well as non singular. In this paper, we study them in detail. Among other things, we find that the scale factor \(a(t) \propto t^{ \frac{2 q}{(2 q - 1) (1 + w) d}}\) for \(f(x) = x^q\), and find explicit Kasner-type solutions if \(w = 2 q - 1 \) also. A result which we find particularly fascinating is that, for \(f(x) = \sqrt{x}\), the evolution is non singular and the scale factor a(t) grows exponentially at a rate set, not by a constant density, but by a quantum parameter related to the area quantum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. There exists a \((d + 1)\) dimensional LQG formulation, given in [22,23,24]. Our preliminary analysis [25], see [26] also, suggests that one can derive the LQC analogs of the effective equations in \((d + 1)\) dimensions, with \(f(x) = \sin x\).

References

  1. Bojowald, M.: Absence of singularity in loop quantum cosmology. Phys. Rev. Lett. 86, 5227 (2001). doi:10.1103/PhysRevLett.86.5227. [arXiv:gr-qc/0102069]

    Article  ADS  MathSciNet  Google Scholar 

  2. Bojowald, M.: The Inverse scale factor in isotropic quantum geometry. Phys. Rev. D 64, 084018 (2001). doi:10.1103/PhysRevD.64.084018. [arXiv:gr-qc/0105067]

    Article  ADS  MathSciNet  Google Scholar 

  3. Bojowald, M.: Isotropic loop quantum cosmology. Class. Quantum Gravity 19, 2717 (2002). doi:10.1088/0264-9381/19/10/313. [arXiv:gr-qc/0202077]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Bojowald, M.: Homogeneous loop quantum cosmology. Class. Quantum Gravity 20, 2595 (2003). doi:10.1088/0264-9381/20/13/310. [arXiv:gr-qc/0303073]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Ashtekar, A., Bojowald, M., Lewandowski, J.: Mathematical structure of loop quantum cosmology. Adv. Theor. Math. Phys. 7, 233 (2003). doi:10.4310/ATMP.2003.v7.n2.a2. [arXiv:gr-qc/0304074]

    Article  MathSciNet  Google Scholar 

  6. Ashtekar, A., Pawlowski, T., Singh, P.: Quantum nature of the big bang. Phys. Rev. Lett. 96, 141301 (2006). doi:10.1103/PhysRevLett.96.141301. [arXiv:gr-qc/0602086]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Ashtekar, A., Pawlowski, T., Singh, P.: Quantum nature of the big bang: improved dynamics. Phys. Rev. D 74, 084003 (2006). doi:10.1103/PhysRevD.74.084003. [arXiv:gr-qc/0607039]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Ashtekar, A., Singh, P.: Loop quantum cosmology: a status report. Class. Quantum Gravity 28, 213001 (2011). doi:10.1088/0264-9381/28/21/213001. arXiv:1004.2952 [gr-qc]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Date, G.: Lectures on LQG/LQC. arXiv:1004.2952 [gr-qc]

  10. Ashtekar, A.: New variables for classical and quantum gravity. Phys. Rev. Lett. 57, 2244 (1986). doi:10.1103/PhysRevLett.57.2244

    Article  ADS  MathSciNet  Google Scholar 

  11. Ashtekar, A.: New Hamiltonian formulation of general relativity. Phys. Rev. D 36, 1587 (1987). doi:10.1103/PhysRevD.36.1587

    Article  ADS  MathSciNet  Google Scholar 

  12. Ashtekar, A., Lewandowski, J.: Background independent quantum gravity: a status report. Class. Quantum Gravity 21, R53 (2004). doi:10.1088/0264-9381/21/15/R01. [arXiv:gr-qc/0404018]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Ashtekar, A.: Lectures on non-perturbative canonical gravity. Notes prepared in collaboration with R. S. Tate, World Scientific, Singapore (1991)

  14. Rovelli, C.: Quantum Gravity. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  15. Thiemann, T.: Introduction to Modern Canonical Quantum General Relativity. Cambridge University Press, Cambridge (2005)

    Google Scholar 

  16. Rovelli, C., Vidotto, F.: Covariant Loop Quantum Gravity. Cambridge University Press, Cambridge (2014)

    Book  MATH  Google Scholar 

  17. Date, G.: Absence of the Kasner singularity in the effective dynamics from loop quantum cosmology. Phys. Rev. D 71, 127502 (2005). doi:10.1103/PhysRevD.71.127502. [arXiv:gr-qc/0505002]

    Article  ADS  Google Scholar 

  18. Ashtekar, A., Wilson-Ewing, E.: Loop quantum cosmology of Bianchi I models. Phys. Rev. D 79, 083535 (2009). doi:10.1103/PhysRevD.79.083535. [arXiv:0903.3397 [gr-qc]]

    Article  ADS  MathSciNet  Google Scholar 

  19. Linsefors, L., Barrau, A.: Modified Friedmann equation and survey of solutions in effective Bianchi-I loop quantum cosmology. Class. Quantum Gravity 31, 015018 (2014). doi:10.1088/0264-9381/31/1/015018. [arXiv:1305.4516 [gr-qc]]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Diener, P., Joe, A., Megevand, M., Singh, P.: Numerical simulations of loop quantum Bianchi-I spacetimes. Class. Quantum Gravity 34, 094004 (2017). doi:10.1088/1361-6382/aa68b5. [arXiv:1701.05824 [gr-qc]]

    Article  ADS  MathSciNet  Google Scholar 

  21. Kalyana Rama, S.: A class of LQC–inspired models for homogeneous, anisotropic cosmology in higher dimensional early universe. Gen. Relativ. Gravit. 48, 155 (2016). doi:10.1007/s10714-016-2150-2. arXiv:1608.03231 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  22. Bodendorfer, N., Thiemann, T., Thurn, A.: New variables for classical and quantum gravity in all dimensions I. Hamiltonian analysis. Class. Quantum Gravity 30, 045001 (2013). doi:10.1088/0264-9381/30/4/045001. [arXiv:1105.3703 [gr-qc]]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Bodendorfer, N., Thiemann, T., Thurn, A.: New variables for classical and quantum gravity in all dimensions II. Lagrangian analysis. Class. Quantum Gravity 30, 045002 (2013). doi:10.1088/0264-9381/30/4/045002. [arXiv:1105.3704 [gr-qc]]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Bodendorfer, N., Thiemann, T., Thurn, A.: New variables for classical and quantum gravity in all dimensions III. Quantum theory. Class. Quantum Gravity 30, 045003 (2013). doi:10.1088/0264-9381/30/4/045003. [arXiv:1105.3705 [gr-qc]]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Kalyana Rama, S., Priya Saha, A.: Unpublished notes

  26. Zhang, X.: Higher dimensional loop quantum cosmology. Eur. Phys. J. C 76(7), 395 (2016). doi:10.1140/epjc/s10052-016-4249-8. [arXiv:1506.05597 [gr-qc]]

    Article  ADS  Google Scholar 

  27. Mielczarek, J.: Multi-fluid potential in the loop cosmology. Phys. Lett. B 675, 273 (2009). doi:10.1016/j.physletb.2009.04.034. arXiv:0809.2469 [gr-qc]

    Article  ADS  Google Scholar 

  28. Wilson-Ewing, E.: The matter bounce scenario in loop quantum cosmology. JCAP 03, 026 (2013). doi:10.1088/1475-7516/2013/03/026. arXiv:1211.6269 [gr-qc]

    Article  ADS  MathSciNet  Google Scholar 

  29. Bowick, M.J., Wijewardhana, L.C.R.: Superstrings at high temperature. Phys. Rev. Lett. 54, 2485 (1985). doi:10.1103/PhysRevLett.54.2485

    Article  ADS  Google Scholar 

  30. Bowick, M.J., Wijewardhana, L.C.R.: Superstring gravity and the early universe. Gen. Relativ. Gravit. 18, 59 (1986). doi:10.1007/BF00843749

    Article  ADS  Google Scholar 

  31. Brandenberger, R.H., Vafa, C.: Superstrings in the early universe. Nucl. Phys. B 316, 391 (1989). doi:10.1016/0550-3213(89)90037-0

    Article  ADS  MathSciNet  Google Scholar 

  32. Tseytlin, A.A., Vafa, C.: Elements of string cosmology. Nucl. Phys. B 372, 443 (1992). doi:10.1016/0550-3213(92)90327-8. [arXiv:hep-th/9109048]

    Article  ADS  MathSciNet  Google Scholar 

  33. Veneziano, G.: A model for the big bounce. JCAP 03, 004 (2004). doi:10.1088/1475-7516/2004/03/004. [arXiv:hep-th/0312182]

    Article  ADS  Google Scholar 

  34. Nayeri, A., Brandenberger, R.H., Vafa, C.: Producing a scale-invariant spectrum of perturbations in a Hagedorn phase of string cosmology. Phys. Rev. Lett. 97, 021302 (2006). doi:10.1103/PhysRevLett.97.021302. [arXiv:hep-th/0511140]

    Article  ADS  Google Scholar 

  35. Kalyana Rama, S.: A stringy correspondence principle in cosmology. Phys. Lett. B 638, 100 (2006). doi:10.1016/j.physletb.2006.05.047. [arXiv:hep-th/0603216]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Kalyana Rama, S.: A principle to determine the number (3 + 1) of large spacetime dimensions. Phys. Lett. B 645, 365 (2007). doi:10.1016/j.physletb.2006.11.077. [arXiv:hep-th/0610071]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Bodendorfer, N.: Black hole entropy from loop quantum gravity in higher dimensions. Phys. Lett. B 726, 887 (2013). doi:10.1016/j.physletb.2013.09.043. [arXiv:1307.5029 [gr-qc]]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Chowdhury, B.D., Mathur, S.D.: Fractional brane state in the early universe. Class. Quantum Gravity 24, 2689 (2007). doi:10.1088/0264-9381/24/10/014. [arXiv:hep-th/0611330]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Kalyana Rama, S.: Entropy of anisotropic universe and fractional branes. Gen. Relativ. Gravit. 39, 1773 (2007). doi:10.1007/s10714-007-0488-1. [arXiv:hep-th/0702202 [hep-th]]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. Kalyana Rama, S.: Consequences of U dualities for intersecting branes in the Universe. Phys. Lett. B 656, 226 (2007). doi:10.1016/j.physletb.2007.09.069. [arXiv:0707.1421 [hep-th]]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. Bhowmick, S., Kalyana Rama, S.: 10 + 1 to 3 + 1 in an early universe with mutually BPS intersecting branes. Phys. Rev. D 82, 083526 (2010). doi:10.1103/PhysRevD.82.083526. [arXiv:1007.0205 [hep-th]]

    Article  ADS  Google Scholar 

  42. Olmo, G .J., Singh, P.: Effective action for loop quantum cosmology a la Palatini. JCAP 01, 030 (2009). doi:10.1088/1475-7516/2009/01/030. arXiv:0806.2783 [gr-qc]

    Article  ADS  Google Scholar 

  43. Sotiriou, T .P.: Covariant effective action for loop quantum cosmology from order reduction. Phys. Rev. D 79, 044035 (2009). doi:10.1103/PhysRevD.79.044035. [arXiv:0811.1799 [gr-qc]]

    Article  ADS  Google Scholar 

  44. Date, G., Sengupta, S.: Effective actions from loop quantum cosmology: correspondence with higher curvature gravity. Class. Quantum Gravity 26, 105002 (2009). doi:10.1088/0264-9381/26/10/105002. [arXiv:0811.4023 [gr-qc]]

    Article  ADS  MathSciNet  MATH  Google Scholar 

  45. Barragan, C., Olmo, G .J., Sanchis-Alepuz, H.: Bouncing cosmologies in Palatini f(R) gravity. Phys. Rev. D 80, 024016 (2009). doi:10.1103/PhysRevD.80.024016. arXiv:0907.0318 [gr-qc]

    Article  ADS  Google Scholar 

  46. Helling, R.C.: Higher curvature counter terms cause the bounce in loop cosmology. arXiv:0912.3011 [gr-qc]

  47. Barragan, C., Olmo, G .J.: Isotropic and anisotropic bouncing cosmologies in Palatini gravity. Phys. Rev. D 82, 084015 (2010). doi:10.1103/PhysRevD.82.084015. arXiv:1005.4136 [gr-qc]

    Article  ADS  Google Scholar 

Download references

Acknowledgements

We thank G. Date for helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Kalyana Rama.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rama, S.K. Variety of \((d + 1)\) dimensional cosmological evolutions with and without bounce in a class of LQC-inspired models. Gen Relativ Gravit 49, 113 (2017). https://doi.org/10.1007/s10714-017-2277-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-017-2277-9

Keywords

Navigation