Skip to main content
Log in

Mutual gravitational potential, force, and torque of a homogeneous polyhedron and an extended body: an application to binary asteroids

  • Original Article
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

Binary systems are quite common within the populations of near-Earth asteroids, main-belt asteroids, and Kuiper belt asteroids. The dynamics of binary systems, which can be modeled as the full two-body problem, is a fundamental problem for their evolution and the design of relevant space missions. This paper proposes a new shape-based model for the mutual gravitational potential of binary asteroids, differing from prior approaches such as inertia integrals, spherical harmonics, or symmetric trace-free tensors. One asteroid is modeled as a homogeneous polyhedron, while the other is modeled as an extended rigid body with arbitrary mass distribution. Since the potential of the polyhedron is precisely described in a closed form, the mutual gravitational potential can be formulated as a volume integral over the extended body. By using Taylor expansion, the mutual potential is then derived in terms of inertia integrals of the extended body, derivatives of the polyhedron’s potential, and the relative location and orientation between the two bodies. The gravitational forces and torques acting on the two bodies described in the body-fixed frame of the polyhedron are derived in the form of a second-order expansion. The gravitational model is then used to simulate the evolution of the binary asteroid (66391) 1999 KW4, and compared with previous results in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ashenberg, J.: Mutual gravitational potential and torque of solid bodies via inertia integrals. Celest. Mech. Dyn. Astron. 99, 149–159 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Bellerose, J., Scheeres, D.J.: Energy and stability in the full two body problem. Celest. Mech. Dyn. Astron. 100, 63–91 (2008a)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Bellerose, J., Scheeres, D.J.: General dynamics in the restricted full three body problem. Acta Astronaut. 62, 563–576 (2008b)

    Article  ADS  MATH  Google Scholar 

  • Borderies, N.: Mutual gravitational potential of N solid bodies. Celest. Mech. 18, 173–181 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  • Boué, G., Laskar, J.: Spin axis evolution of two interacting bodies. Icarus 201, 750–767 (2009)

    Article  ADS  Google Scholar 

  • Brouwer, D., Clemence, G.M.: Method of Celestial Mechanics. Academic Press, New York (1961)

    MATH  Google Scholar 

  • Cady, J.W.: Calculation of gravity and magnetic anomalies of finite-length right polygonal prisms. Geophysics 45(10), 1507–1512 (1980)

    Article  ADS  Google Scholar 

  • Chapman, C.R., et al.: Discovery and physical properties of Dactyl, a satellite of Asteroid 243 Ida. Nature 374, 783–785 (1995)

    Article  ADS  Google Scholar 

  • Compère, A., Lemaître, A.: The two-body interaction potential in the STF tensor formalism: an application to binary asteroids. Celest. Mech. Dyn. Astron. 119(3–4), 313–330 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Ćuk, M., Nesvorný, D.: Orbital evolution of small binary asteroids. Icarus 207, 732–743 (2010)

    Article  ADS  Google Scholar 

  • Fahnestock, E.G.: The full two-body-problem: simulation, analysis, and application to the dynamics, characteristics, and evolution of binary asteroid systems. Ph.D. Dissertation. The University of Michigan (2009)

  • Fahnestock, E.G., Scheeres, D.J.: Simulation and analysis of the dynamics of binary near-Earth Asteroid (66391) 1999 KW4. Icarus 194, 410–435 (2008)

    Article  ADS  Google Scholar 

  • Giacaglia, C.E., Jefferys, W.H.: Motion of a space station. Celest. Mech. 4, 442–467 (1971)

    Article  ADS  MATH  Google Scholar 

  • Golizdra, G.Y.: Calculation of the gravitational field of a polyhedron Izvestiya. Phys. Solid Earth 17(8), 625 (1981)

    Google Scholar 

  • Hirabayashi, M., Scheeres, D.J.: Recursive computation of mutual potential between two polyhedra. Celest. Mech. Dyn. Astron. 117, 245–262 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  • Hou, X., Scheeres, D.J., Xin, X.: Mutual potential between two rigid bodies with arbitrary shapes and mass distributions. Celest. Mech. Dyn. Astron. 127(3), 369–395 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  • Kwok, Y.K.: Gravity gradient tensors due to a polyhedron with polygonal FACETS1. Geophys. Prospect. 39(3), 435–443 (1991)

    Article  ADS  Google Scholar 

  • Macmillan, W.D.: The Theory of the Potential. McGraw-Hill Book Company, Inc, New York (1930)

    MATH  Google Scholar 

  • Maciejewski, A.J.: Reduction, relative equilibria and potential in the two rigid bodies problem. Celest. Mech. Dyn. Astron. 63(1), 1–28 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Marchis, F., Lainey, V., Descamps, P., Berthier, J., Van Dam, M., de Pater, I., et al.: A dynamical solution of the triple asteroid system (45) Eugenia. Icarus 210, 635–643 (2010)

    Article  ADS  Google Scholar 

  • Margot, J.L., Nolan, M.C., Benner, L.A.M., Ostro, S.J., Jurgens, R.F., Giorgini, J.D., et al.: Binary asteroids in the near-earth object population. Science 296(5572), 1445–1448 (2002)

    Article  ADS  Google Scholar 

  • Meirovitch, L.: On the effect of higher-order inertia integrals on the attitude stability of earth-pointing satellites. J. Astronaut. Sci. XV(1), 14–18 (1968)

    ADS  Google Scholar 

  • Nagy, D.: The gravitational attraction of a right rectangular prism. Geophysics 31(2), 362 (1966)

    Article  ADS  Google Scholar 

  • Plouff, D.: Gravity and magnetic fields of polygonal prisms and application to magnetic terrain corrections. Geophysics 41, 727–741 (1976)

    Article  ADS  Google Scholar 

  • Pravec, P., Harris, A.W.: Binary asteroid population. 1. Angular momentum content. Icarus 190(1), 250–259 (2007)

    Article  ADS  Google Scholar 

  • Scheeres, D.J.: Stability in the full two-body problem. Celest. Mech. Dyn. Astron. 83, 155–169 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Scheeres, D.J.: Stability of relative equilibria in the full two-body problem. Ann. N. Y. Acad. Sci. 1017, 81–94 (2004)

    Article  ADS  Google Scholar 

  • Scheeres, D.J.: Relative equilibria for general gravity fields in the sphere-restricted full 2-body problem. Celest. Mech. Dyn. Astron. 94, 317–349 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Scheeres, D.J.: Stability of the planar full 2-body problem. Celest. Mech. Dyn. Astron. 104, 103–128 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Schutz, B.E.: The mutual potential and gravitational torque of two bodies to fourth order. Celest. Mech. 24, 173–181 (1981)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Telford, W.M., Geldart, L.P., Sheriff, R.E.: Applied Geophysics. Cambridge University Press, Cambridge (1976)

    Google Scholar 

  • Tricarico, P.: Figure–figure interaction between bodies having arbitrary shapes and mass distributions: a power series expansion approach. Celest. Mech. Dyn. Astron. 100(4), 319–330 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Waldvogel, J.: The Newtonian potential of a homogeneous cube. J. Appl. Math. Phys. (ZAMP) 27, 867 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  • Waldvogel, J.: The Newtonian potential of homogeneous polyhedra. J. Appl. Math. Phys. (ZAMP) 30, 388 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  • Wang, Y., Xu, S.: Hamiltonian structures of dynamics of a gyrostat in a gravitational field. Nonlinear Dyn. 70(1), 231–247 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  • Werner, R.A.: The gravitational potential of a homogeneous polyhedron or don’t cut corners. Celest. Mech. Dyn. Astron. 59(3), 253–278 (1994)

    Article  ADS  MATH  Google Scholar 

  • Werner, R.A., Scheeres, D.J.: Exterior gravitation of a polyhedron derived and compared with harmonic and mascon gravitation representations of asteroid 4769 Castalia. Celest. Mech. Dyn. Astron. 65, 313–344 (1997)

    Article  ADS  MATH  Google Scholar 

  • Werner, R.A., Scheeres, D.J.: Mutual potential of homogeneous polyhedra. Celest. Mech. Dyn. Astron. 91, 337–349 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Wisdom, J.: Rotational dynamics of irregularly shaped natural satellites. Astron. J. 94, 1350–1360 (1987)

    Article  ADS  Google Scholar 

  • Wisdom, J., Peale, S.J., Mignard, F.: The chaotic rotation of Hyperion. Icarus 58, 137–152 (1984)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work has been supported by the National Natural Science Foundation of China under Grant Nos. 11432001 and 11602009, and the Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yue Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, Y., Wang, Y. & Xu, S. Mutual gravitational potential, force, and torque of a homogeneous polyhedron and an extended body: an application to binary asteroids. Celest Mech Dyn Astr 129, 307–320 (2017). https://doi.org/10.1007/s10569-017-9776-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10569-017-9776-6

Keywords

Navigation