Skip to main content
Log in

Mutual potential between two rigid bodies with arbitrary shapes and mass distributions

  • Original Article
  • Published:
Celestial Mechanics and Dynamical Astronomy Aims and scope Submit manuscript

Abstract

Formulae to compute the mutual potential, force, and torque between two rigid bodies are given. These formulae are expressed in Cartesian coordinates using inertia integrals. They are valid for rigid bodies with arbitrary shapes and mass distributions. By using recursive relations, these formulae can be easily implemented on computers. Comparisons with previous studies show their superiority in computation speed. Using the algorithm as a tool, the planar problem of two ellipsoids is studied. Generally, potential truncated at the second order is good enough for a qualitative description of the mutual dynamics. However, for ellipsoids with very large non-spherical terms, higher order terms of the potential should be considered, at the cost of a higher computational cost. Explicit formulae of the potential truncated to the fourth order are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Notes

  1. Potential truncated at the \(4\hbox {th}\) order is given in Appendix 1, along with the force and the torque. Note that these formulae are only valid for the planar case.

References

  • Ashenberg, J.: Mutual gravitational potential and torque of solid bodies via inertia integrals. Celest. Mech. Dyn. Astron. 99, 149–159 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Boldrin, L.A.G., Scheeres, D.J., Winter, O.C.: dynamics of rotationally fissioned asteroids: non-planar case. Mon. Not. R. Astron. Soc. 461, 3982–3992 (2016)

    Article  ADS  Google Scholar 

  • Borderies, N.: Mutual gravitational potential of N solid bodies. Celest. Mech. 18, 295–307 (1978)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Carvalho, J.P.S., Mourao, D.C., de Morases, R.V., et al.: Exoplanets in binary star systems: on the switch from prograde to retrograde orbits. Celest. Mech. Dyn. Astron. 124, 73–96 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Chappaz, L., Howell, K.C.: Exploration of bounded motion near binary systems comprised of small irregular bodies. Celest. Mech. Dyn. Astron. 123, 123–149 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  • Compère, A., Lemaître, A.: The two-body interaction potential in the STF tensor formalism: an application to binary asteroids. Celest. Mech. Dyn. Astron. 119, 313–330 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Fahnestock, E.G., Scheeres, D.J.: Simulation of the full two rigid body problem using polyhedral mutual potential and potential derivatives approach. Celest. Mech. Dyn. Astron. 96, 317–339 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Fahnestock, E.G., Scheeres, D.J.: Simulation and analysis of the dynamics of binary near-Earth asteroid (66391) 1999 KW4. Icarus 194, 410–435 (2008)

    Article  ADS  Google Scholar 

  • Ferrari, F., Lavagna, M., Howell, K.C.: Dynamical model of binary asteroid systems through patched three-body problem. Celest. Mech. Dyn. Astron. 125, 413–433 (2016). doi:10.1007/s10569-016-9688-x

    Article  ADS  MathSciNet  Google Scholar 

  • Ferraz-Mello, S., Rodríguez, A., Hussmann, H.: Tidal friction in close-in satellites and exoplanets: the Darwin theory re-visited. Celest. Mech. Dyn. Astron. 101, 171–201 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Giacaglia, G.E.O., Jefferys, W.H.: Motion of a space station. I. Celest. Mech. 4, 442–467 (1971)

    Article  ADS  MATH  Google Scholar 

  • Hartmann, T., Soffel, M.H., Kioustelidis, T.: On the use of STF-tensors in celestial mechanics. Celest. Mech. Dyn. Astron. 60, 139–159 (1994)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Hirabayashi, M., Scheeres, D.J.: Recursive computation of mutual potential between two polyhedra. Celest. Mech. Dyn. Astron. 117, 245–262 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  • Jacobson, S.A., Scheeres, D.J.: Dynamics of rotationally fissioned asteroid: source of obsreved small asteroid systems. Icarus 214, 161–178 (2011)

    Article  ADS  Google Scholar 

  • Kinoshita, H.: First-order perturbations of the two finite body problem. Publ. Astron. Soc. Jpn. 24, 423–457 (1972)

    ADS  Google Scholar 

  • Maciejewski, J.: Reduction, relative equilibria and potential in the two rigid bodies problem. Celest. Mech. Dyn. Astron. 63, 1–28 (1995)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Macmillan, W.D.: Theory of the Potential. Dover, New York (1958)

    MATH  Google Scholar 

  • Margot, J.L., Pravec, P., Taylor, P., et al.: Asteroid systems: binaries, triples, and pairs. Asteroids IV. University of Arizona, Tucson, pp. 355–374 (2015)

  • McMahon, J.W., Scheeres, D.J.: Dynamic limits on planar libration-orbit coupling around an oblate primary. Celest. Mech. Dyn. Astron. 115, 365–396 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Murray, C.D., Dermott, S.F.: Solar System Dynamics. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  • Naidu, S.P., Margot, J.L.: Near-Earth asteroid satellite spins under spin–orbit coupling. Astron. J. 149, 80–90 (2015)

    Article  ADS  Google Scholar 

  • Paul, M.K.: An expansion in power series of mutual potential for gravitating bodies with finite sizes. Celest. Mech. 44, 49–59 (1988)

    Article  ADS  MATH  Google Scholar 

  • Pravec, P., Vokrouhlický, D., Polishook, D., et al.: Formation of asteroid pairs by rotational fission. Nature 466, 1085–1088 (2010)

    Article  ADS  Google Scholar 

  • Sánchez, D.P., Scheeres, D.J.: Simulation of rotation-induced resphaping and disruption of rubble-pile asteroids. Icarus 218, 876–894 (2012)

    Article  ADS  Google Scholar 

  • Scheeres, D.J.: Relative equilibria for general gravity fields in the sphere-restricted full 2-body problem. Celest. Mech. Dyn. Astron. 94, 317–349 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Scheeres, D.J.: Rotational fission of contact binary asteroids. Icarus 189, 370–385 (2007)

    Article  ADS  Google Scholar 

  • Scheeres, D.J.: Stability of the planar full 2-body problem. Celest. Mech. Dyn. Astron. 104, 103–128 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Scheeres, D.J.: Minimum energy configurations in the N-body problem and the celestial mechanics of granular systems. Celest. Mech. Dyn. Astron. 113, 291–320 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Scheeres, D.J.: Landslides and mass shedding on spinning spheroidal asteroids. Icarus 247, 1–17 (2015)

    Article  ADS  Google Scholar 

  • Scheeres, D.J., Fahnestock, E.G., Ostro, S.J., et al.: Dynamical configuration of binary near-Earth asteroid (66391) 1999 KW4. Science 314, 1280–1283 (2006)

    Article  ADS  Google Scholar 

  • Schutz, B.E.: The mutual potential and gravitational torques of two bodies to fourth order. Celest. Mech. 24, 173–181 (1979)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Taylor, P.A., Margot, J.L.: Tidal evolution of close binary asteroid systems. Celest. Mech. Dyn. Astron. 108, 315–338 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Taylor, P.A., Margot, J.L.: Tidal end states of binary asteoroid systems with a nonspherical component. Icarus 229, 418–422 (2014)

    Article  ADS  Google Scholar 

  • Takahashi, Y., Scheeres, D.J.: Morphology driven density distribution estimation for small bodies. Icarus 233(1), 179–193 (2014)

    Article  ADS  Google Scholar 

  • Tricarico, P.: Figure–figure interaction between bodies having arbitrary shapes and mass distributions: a power series expansion approach. Celest. Mech. Dyn. Astron. 100, 319–330 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Wang, Z., Guo, D.: Special Functions. World Scientific, Singapore (1989)

    Book  Google Scholar 

  • Wang, Y., Xu, S.: Orbital dynamics and equilibrium points around an asteroid with gravitational orbit-attitude coupling perturbation. Celest. Mech. Dyn. Astron. 125, 265–285 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  • Werner, R.A., Scheeres, D.J.: Mutual potential of homogeneous polyhedral. Celest. Mech. Dyn. Astron. 91, 337–349 (2005)

    Article  ADS  MATH  Google Scholar 

  • Wigner, E.P.: Group Theory and its Application to the Quantum Mechanics of Atomic Spectra. Academic, New York (1959)

    MATH  Google Scholar 

  • Wisdom, J., Peale, S.J.: The chaotic rotation of Hyperion. Icarus 58, 137–152 (1984)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was finished during the first author’s visit to the Colorado Center for Astrodynamics Research (CCAR). X.Y.H. thanks the support from national Natural Science Foundation of China (11322330) and national Basic Research Program of China (2013CB834100). The authors thank Gwenaël Boué and the other anonymous reviewer for their many useful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiyun Hou.

Appendices

Appendix 1: explicit expressions of the \(4\hbox {th}\) order potential for the planar two ellipsoids problem

We provide formulae for the \(4\hbox {th}\) order potential here. In these formulae, we define

$$\begin{aligned} \delta =\theta -\phi \end{aligned}$$

where \(\theta \) is the quadrant angle of the position vector \({\mathbf {R}}\) in the body-fixed frame of A, and \(\phi \) is defined in Sect. 5. The relative geometry of the system is defined in Fig. 15.

Fig. 15
figure 15

A picture illustrating the relative geometry of the system and the variables used

In the following, the mutual potential is defined by Eq. (19) where

$$\begin{aligned} \tilde{U}_0= & {} T^{000}_AT^{000}_B \\ \tilde{U}_2= & {} A_1+A_2\cos 2\theta +A_3\cos 2\delta \\ \tilde{U}_4= & {} B_1+B_2\cos 2\theta +B_3\cos 4\theta +B_4\cos 2\delta +B_5\cos 4\delta +B_6\cos 2\phi +B_7\cos (2\theta +2\delta ) \end{aligned}$$

where

$$\begin{aligned} A_1= & {} \frac{1}{4}\left( T^{200}_B+T^{020}_B-2T^{002}_B\right) T^{000}_A+\frac{1}{4}\left( T^{200}_A+T^{020}_A-2T^{002}_A\right) T^{000}_B\\ A_2= & {} \frac{3}{4}\left( T^{200}_A-T^{020}_A\right) T^{000}_B,\\ A_3= & {} \frac{3}{4}\left( T^{200}_B-T^{020}_B\right) T^{000}_A\\ B_1= & {} \frac{9}{64}T^{000}_B\left( T^{400}_A+T^{040}_A+\frac{8}{3}T^{004}_A+2T^{220}_A-8T^{022}_A-8T^{202}_A\right) \\&+\,\frac{9}{64}T^{000}_A\left( T^{400}_B+T^{040}_B+\frac{8}{3}T^{004}_B+2T^{220}_B-8T^{022}_B-8T^{202}_B\right) \\&-\,\frac{9}{8}T^{002}_B\left( T^{200}_A+T^{020}_A-T^{002}_A\right) -\frac{9}{8}T^{002}_A\left( T^{200}_B+T^{020}_B-T^{002}_B\right) \\&+\,\frac{9}{16}\left( T^{200}_A+T^{020}_A\right) \left( T^{200}_B+T^{020}_B\right) \\ B_2= & {} \frac{5}{16}T^{000}_B\left( T^{400}_A-T^{040}_A+6T^{022}_A-6T^{202}_A\right) \\&+\,\frac{15}{16}\left( T^{200}_A-T^{020}_A\right) \left( T^{200}_B+T^{020}_B-2T^{002}_B\right) \\ B_3= & {} \frac{35}{16}T^{00}\left( T^{400}_A+T^{040}_A-6T^{220}_A\right) \\ B_4= & {} \frac{5}{16}T^{000}_A\left( T^{400}_B-T^{040}_B+6T^{022}_B-6T^{202}_B\right) \\&+\,\frac{15}{16}\left( T^{200}_B-T^{020}_B\right) \left( T^{200}_A+T^{020}_A-2T^{002}_A\right) \\ B_5= & {} \frac{35}{64}T^{000}_A\left( T^{400}_B+T^{040}_B-6T^{220}_B\right) \\ B_6= & {} \frac{9}{32}\left( T^{200}_A-T^{020}_A\right) \left( T^{200}_B-T^{020}_B\right) \\ B_7= & {} \frac{105}{32}\left( T^{200}_A-T^{020}_A\right) \left( T^{200}_B-T^{020}_B\right) \end{aligned}$$

For the \(2\hbox {nd}\) order potential, it’s obvious that \(U_{\min }({\mathbf {R}})\) corresponds to the maximum value of \(\tilde{U}_2\). This means \(\delta =0\) (i.e., \(\theta =\phi \)). As a result, we have

$$\begin{aligned} U_{\min }({\mathbf {R}})=- G\left( \frac{\tilde{U}_0}{R}+\frac{\tilde{U}^{\max }_2}{R^3}\right) \end{aligned}$$

where

$$\begin{aligned} \tilde{U}^{max}_2=A_1+A_2\cos 2\theta +A_3 \end{aligned}$$

For the potential truncated at the 4th order, \(U_{\min }({\mathbf {R}})\) usually doesn’t exactly happen at \(\delta =0\), especially for small values of R. The exact value of \(\phi \) for \(U_{\min }({\mathbf {R}})\) can be obtained by the following condition

$$\begin{aligned} \frac{\partial {U\left( {\mathbf {R}},\phi \right) }}{\partial {\phi }}=0 \end{aligned}$$

Usually there are two solutions to this equation. The minimum value happens for \(\delta \) close to \(\theta \).

Equations of motion are already given by Eq. (30). The forces are given by

$$\begin{aligned} \frac{\partial {U}}{\partial {X}}= & {} G\left[ X\left( \frac{\tilde{U}_0}{R^3}+\frac{3\tilde{U}_2}{R^5}+\frac{5\tilde{U_4}}{R^7}\right) - \left( \frac{1}{R^3}\frac{\partial {\tilde{U}}_2}{\partial {\theta }}+\frac{1}{R^5}\frac{\partial {\tilde{U}}_4}{\partial {\theta }}\right) \frac{\partial {\theta }}{\partial {X}}\right] \\ \frac{\partial {U}}{\partial {Y}}= & {} G\left[ Y\left( \frac{\tilde{U}_0}{R^3}+\frac{3\tilde{U}_2}{R^5}+\frac{5\tilde{U_4}}{R^7}\right) - \left( \frac{1}{R^3}\frac{\partial {\tilde{U}}_2}{\partial {\theta }}+\frac{1}{R^5}\frac{\partial {\tilde{U}}_4}{\partial {\theta }}\right) \frac{\partial {\theta }}{\partial {Y}}\right] \end{aligned}$$

where

$$\begin{aligned} \frac{\partial {\theta }}{\partial {X}}=-\frac{Y}{R^2},\quad \frac{\partial {\theta }}{\partial {Y}}=\frac{X}{R^2} \end{aligned}$$

The torque \(M_z^B\) is given by

$$\begin{aligned} M_z^B=-\frac{\partial {U}}{\partial {\theta _B}}= -\frac{\partial {U}}{\partial {\phi }}\frac{\partial {\phi }}{\partial {\theta }_B}= -\frac{\partial {U}}{\partial {\phi }}=G\left[ \frac{1}{R^3}\frac{\partial {\tilde{U}_2}}{\partial {\phi }} +\frac{1}{R^5}\frac{\partial {\tilde{U}_4}}{\partial {\phi }}\right] \end{aligned}$$

and the torque \(M_z^A\) is given by

$$\begin{aligned} M_z^A=-\frac{\partial {U}}{\partial {\theta _A}}=-\frac{\partial {U}}{\partial {\theta }}\frac{\partial {\theta }}{\partial {\theta }_A} -\frac{\partial {U}}{\partial {\phi }}\frac{\partial {\phi }}{\partial {\theta }_A}=\frac{\partial {U}}{\partial {\theta }} +\frac{\partial {U}}{\partial {\phi }}={\mathbf {R}}\times \frac{\partial {U}}{\partial {{\mathbf {R}}}}-M^B_z \\ =-G\left[ \frac{1}{R^3}\frac{\partial {\tilde{U}_2}}{\partial {\theta }}+\frac{1}{R^5}\frac{\partial {\tilde{U}_4}}{\partial {\theta }}\right] -G\left[ \frac{1}{R^3}\frac{\partial {\tilde{U}_2}}{\partial {\phi }}+\frac{1}{R^5}\frac{\partial {\tilde{U}_4}}{\partial {\phi }}\right] \end{aligned}$$

We have

$$\begin{aligned} \frac{\partial {\tilde{U}_2}}{\partial {\theta }}= & {} -2A_2\sin 2\theta -2A_3\sin 2\delta \\ \frac{\partial {\tilde{U}_2}}{\partial {\phi }}= & {} 2A_3\sin 2\delta \frac{\partial {\tilde{U}_4}}{\partial {\theta }}=-2B_2\sin 2\theta \\&-\,4B_3\sin 4\theta -2B_4\sin 2\delta -4B_5\sin 4\delta -4B_7\sin \left( 2\theta +2\delta \right) \\ \frac{\partial {\tilde{U}_4}}{\partial {\phi }}= & {} 2B_4\sin 2\delta +4B_5\sin 4\delta -2B_6\sin 2\phi +2B_7\sin (2\theta +2\delta ) \end{aligned}$$

The accuracy of these formulae is checked by a handmade program. Integrated orbits using these formulae are compared with the ones integrated by using Eq. (21) (or. Eq. (27)) which needs the intermediate variables \(T^{\prime lmn}_B\). Details of these comparisons are omitted. These formulae should be useful for future studies. Compared with the \(2\hbox {nd}\) order potential, increase of the computation cost is acceptable.

One remark is made here. Utilizing the fact that

$$\begin{aligned} \theta =-\phi _1,\quad \delta =-\phi _2 \end{aligned}$$

The second order potential is identical to that given in (Scheeres 2009) which used a different set of variables. For researchers who are interested in this set of variables, the 4th order potential can be easily obtained from the formulae given here.

Appendix 2: the matrix \(\tilde{A}^{\prime }\)

From Eq. (32), neglecting the obvious zero terms for the contact equilibrium, we have the following variational equations

$$\begin{aligned} \left\{ \begin{array}{ll} \delta \ddot{R}=\left( \dot{\theta }+\dot{\theta }_A\right) ^2\delta R+2R\left( \dot{\theta }+\dot{\theta }_A\right) \delta \dot{\theta }+2R\left( \dot{\theta }+\dot{\theta }_A\right) \delta \dot{\theta }_A -\frac{1}{m}U_{RR}\delta R \\ \delta \ddot{\theta }=-\left[ \left( \frac{1}{I^A_z}+\frac{1}{mR^2}\right) U_{\theta \theta }+\frac{1}{I^A_z}U_{\theta \phi }\right] \delta \theta -\left[ \left( \frac{1}{I^A_z}+\frac{1}{mR^2}\right) U_{\theta \phi }+\frac{1}{I^A_z}U_{\phi \phi }\right] \delta \phi -\frac{2\left( \dot{\theta }+\dot{\theta }_A\right) }{R}\delta \dot{R} \\ \delta \ddot{\phi }=-\left[ \left( \frac{1}{I^A_z}+\frac{1}{I^B_z}\right) U_{\theta \phi }+\frac{1}{I^A_z}U_{\theta \theta }\right] \delta \theta -\left[ \left( \frac{1}{I^A_z}+\frac{1}{I^B_z}\right) U_{\phi \phi }+\frac{1}{I^A_z}U_{\theta \phi }\right] \delta \phi \end{array} \right. \end{aligned}$$

Utilizing the fact that the total angular momentum of the system conserves, we have

$$\begin{aligned} \delta \dot{\theta }_A=-\frac{2mR \left( \dot{\theta }_A+\dot{\theta }\right) }{I_z}\delta R- \frac{mR^2}{I_z}\delta \dot{\theta }-\frac{I^B_z}{I_z}\delta \dot{\phi } \end{aligned}$$

Substituting the relation to the above equation, we have

$$\begin{aligned} \left\{ \begin{array}{ll} \delta \ddot{R}=a_{41}\delta R+a_{45}\delta \dot{\theta }+a_{46}\delta \dot{\phi } \\ \delta \ddot{\theta }=a_{52}\delta \theta +a_{53}\delta \phi +a_{54}\delta \dot{R} \\ \delta \ddot{\phi }=a_{62}\delta \theta +a_{63}\delta \phi \end{array} \right. \end{aligned}$$

where

$$\begin{aligned} a_{41}= & {} \dot{\theta }^2_A\left( 1-\frac{4mR^2}{I_z}\right) -\frac{1}{m}U_{RR}, \\ a_{45}= & {} 2R\dot{\theta }_A\left( 1-\frac{mR^2}{I_z}\right) , \\ a_{46}= & {} -\frac{2R\dot{\theta }_AI^B_z}{I_z}, \\ a_{52}= & {} -\left[ \left( \frac{1}{I^A_z}+\frac{1}{mR^2}\right) U_{\theta \theta }+\frac{1}{I^A_z}U_{\theta \phi }\right] , \\ a_{53}= & {} -\left[ \left( \frac{1}{I^A_z}+\frac{1}{mR^2}\right) U_{\theta \phi }+\frac{1}{I^A_z}U_{\phi \phi }\right] , \\ a_{54}= & {} -\frac{2\dot{\theta }_A}{R}, \\ a_{62}= & {} -\left[ \left( \frac{1}{I^A_z}+\frac{1}{I^B_z}\right) U_{\theta \phi }+\frac{1}{I^A_z}U_{\theta \theta }\right] , \\ a_{63}= & {} -\left[ \left( \frac{1}{I^A_z}+\frac{1}{I^B_z}\right) U_{\phi \phi }+\frac{1}{I^A_z}U_{\theta \phi }\right] \end{aligned}$$

The matrix \(\tilde{A}^{\prime }\) is a plain fact from the above equation. For the equilibrium case studied in this paper (i.e., two ellipsoids aligning with each other along their long axes), we have

$$\begin{aligned} \dot{\theta }_A^2= & {} \frac{G}{m}\left[ \frac{\tilde{U}_0}{R^3}+\frac{3\left( A_1+A_2+A_3\right) }{R^5}+\frac{5\left( B_1+B_2+B_3+B_4+B_5+B_6+B_7\right) }{R^7}\right] \\ U_{RR}= & {} -G\left[ \frac{2\tilde{U}_0}{R^3}+\frac{12\left( A_1+A_2+A_3\right) }{R^5}+\frac{30\left( B_1+B_2+B_3+B_4+B_5+B_6+B_7\right) }{R^7}\right] \\ U_{\theta \theta }= & {} 4G\left[ \frac{\left( A_2+A_3\right) }{R^3}+\frac{\left( B_2+4B_3+B_4+4B_5+B_6+4B_7\right) }{R^5}\right] \\ U_{\theta \phi }= & {} -4G\left[ \frac{A_3}{R^3}+\frac{\left( B_4+4B_5+2B_7\right) }{R^5}\right] \\ U_{\phi \phi }= & {} 4G\left[ \frac{A_3}{R^3}+\frac{\left( B_4+4B_5+B_6+B_7\right) }{R^5}\right] \end{aligned}$$

The eigenvalues of the system satisfies the following equation

$$\begin{aligned}&\lambda ^6-\left( a_{41}+a_{52}+a_{63}+a_{45}a_{54}\right) \lambda ^4 +\left( a_{41}a_{63}+a_{52}a_{63}+a_{41}a_{52}-a_{53}a_{62}+a_{45}a_{54}a_{63}\right. \\&\left. \quad -\,a_{46}a_{62}a_{54}\right) \lambda ^2 + \left( a_{53}a_{62}a_{41}-a_{41}a_{52}a_{63}\right) =0 \end{aligned}$$

From this equation, we compute the eigenvalues and generate the left frame of Fig. 6.

For the equilibrium case studied in this paper, the system energy is

$$\begin{aligned} E=\frac{H^2}{2I_p}+U=\frac{1}{2}(mR^2+I^A_z+I^B_z)\frac{G}{m} \left[ \frac{\tilde{U}_0}{R^3}+\frac{3D_1}{R^5}+\frac{5D_2}{R^7}\right] -G\left[ \frac{\tilde{U}_0}{R}+\frac{D_1}{R^3}+\frac{D_2}{R^5}\right] \end{aligned}$$

where

$$\begin{aligned} D_1= & {} A_1+A_2+A_3 \\ D_2= & {} B_1+B_2+B_3+B_4+B_5+B_6+B_7 \end{aligned}$$

The condition \(E=0\) gives out the following equation

$$\begin{aligned}&5D_2\left( I^A_z+I^B_z\right) \left( \frac{1}{R^2}\right) ^3+\left[ 3D_1\left( I^A_z+I^B_z\right) +3mD_2\right] \left( \frac{1}{R^2}\right) ^2\\&\quad +\,\left[ (I^A_z+I^B_z)\tilde{U}_0+mD_1\right] \left( \frac{1}{R^2}\right) -m\tilde{U}_0=0 \end{aligned}$$

From this equation, we compute the \(R_H \ge 1\) in the right frame of Fig. 6.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, X., Scheeres, D.J. & Xin, X. Mutual potential between two rigid bodies with arbitrary shapes and mass distributions. Celest Mech Dyn Astr 127, 369–395 (2017). https://doi.org/10.1007/s10569-016-9731-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10569-016-9731-y

Keywords

Navigation