Skip to main content
Log in

Minimizers for nonlocal perimeters of Minkowski type

  • Published:
Calculus of Variations and Partial Differential Equations Aims and scope Submit manuscript

Abstract

We study a nonlocal perimeter functional inspired by the Minkowski content, whose main feature is that it interpolates between the classical perimeter and the volume functional. This nonlocal functionals arise in concrete applications, since the nonlocal character of the problems and the different behaviors of the energy at different scales allow the preservation of details and irregularities of the image in the process of removing white noises, thus improving the quality of the image without losing relevant features. In this paper, we provide a series of results concerning existence, rigidity and classification of minimizers, compactness results, isoperimetric inequalities, Poincaré–Wirtinger inequalities and density estimates. Furthermore, we provide the construction of planelike minimizers for this generalized perimeter under a small and periodic volume perturbation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Auer, F., Bangert, V.: Differentiability of the stable norm in codimension one. Am. J. Math. 128(1), 215–238 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  2. Barchiesi, M., Kang, S.H., Le, T.M., Morini, M., Ponsiglione, M.: A variational model for infinite perimeter segmentations based on Lipschitz level set functions: denoising while keeping finely oscillatory boundaries. Multiscale Model. Simul. 8(5), 1715–1741 (2010). https://doi.org/10.1137/090773659

    Article  MathSciNet  MATH  Google Scholar 

  3. Caffarelli, L.A., de la Llave, R.: Planelike minimizers in periodic media. Commun. Pure Appl. Math. 54(12), 1403–1441 (2001). https://doi.org/10.1002/cpa.10008

    Article  MathSciNet  MATH  Google Scholar 

  4. Caffarelli, L.A., de la Llave, R.: Interfaces of ground states in Ising models with periodic coefficients. J. Stat. Phys. 118(3–4), 687–719 (2005). https://doi.org/10.1007/s10955-004-8825-1

    Article  MathSciNet  MATH  Google Scholar 

  5. Caffarelli, L.A., Roquejoffre, J.-M., Savin, O.: Nonlocal minimal surfaces. Comm.un Pure Appl. Math. 63(9), 1111–1144 (2010). https://doi.org/10.1002/cpa.20331

    MathSciNet  MATH  Google Scholar 

  6. Cesaroni, A., Novaga, M.: Isoperimetric problems for a nonlocal perimeter of Minkowski type. Geom. Flows 2, 86–93 (2017). https://doi.org/10.1515/geofl-2017-0003

    MathSciNet  MATH  Google Scholar 

  7. Chambolle, A., Giacomini, A., Lussardi, L.: Continuous limits of discrete perimeters. M2AN Math. Model. Numer. Anal. 44(2), 207–230 (2010). https://doi.org/10.1051/m2an/2009044

    Article  MathSciNet�� MATH  Google Scholar 

  8. Chambolle, A., Lisini, S., Lussardi, L.: A remark on the anisotropic outer Minkowski content. Adv. Calc. Var. 7(2), 241–266 (2014). https://doi.org/10.1515/acv-2013-0103

    Article  MathSciNet  MATH  Google Scholar 

  9. Chambolle, A., Morini, M., Ponsiglione, M.: A nonlocal mean curvature flow and its semi-implicit time-discrete approximation. SIAM J. Math. Anal. 44(6), 4048–4077 (2012). https://doi.org/10.1137/120863587

    Article  MathSciNet  MATH  Google Scholar 

  10. Chambolle, A., Morini, M., Ponsiglione, M.: Nonlocal curvature flows. Arch. Ration. Mech. Anal. 218(3), 1263–1329 (2015). https://doi.org/10.1007/s00205-015-0880-z

    Article  MathSciNet  MATH  Google Scholar 

  11. Chambolle, A., Thouroude, G.: Homogenization of interfacial energies and construction of plane-like minimizers in periodic media through a cell problem. Netw. Heterog. Media 4(1), 127–152 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chung, G., Vese, L.A.: Image segmentation using a multilayer level-set approach. Comput. Vis. Sci. 12(6), 267–285 (2009). https://doi.org/10.1007/s00791-008-0113-1

    Article  MathSciNet  MATH  Google Scholar 

  13. Cozzi, M., Dipierro, S., Valdinoci, E.: Nonlocal phase transitions in homogeneous and periodic media. J. Fixed Point Theory Appl. 19(1), 387–405 (2017). https://doi.org/10.1007/s11784-016-0359-z

    Article  MathSciNet  MATH  Google Scholar 

  14. Cozzi, M., Dipierro, S., Valdinoci, E.: Planelike interfaces in long-range Ising models and connections with nonlocal minimal surfaces. J. Stat. Phys. 167(6), 1401–1451 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  15. Cozzi, M., Valdinoci, E.: Plane-like minimizers for a non-local Ginzburg-Landau-type energy in a periodic medium, language=English, with English and French summaries. J. Éc. Polytech. Math. 4, 337–388 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  16. Dipierro, S., Novaga, M., Valdinoci, E.: On a Minkowski geometric flow in the plane. arxiv preprint, arXiv:1710.05236 (2017)

  17. Dipierro, S., Valdinoci, E.: Nonlocal Minimal Surfaces: Interior Regularity, Quantitative Estimates and Boundary Stickiness, Recent Developments in the Nonlocal Theory. Book Series on Measure Theory. De Gruyter, Berlin (2017)

    Google Scholar 

  18. Federer, H.: Geometric Measure Theory. Die Grundlehren der mathematischen Wissenschaften, Band 153. Springer, New York (1969)

    Google Scholar 

  19. Gardner, R.J.: The Brunn–Minkowski inequality. Bull. Am. Math. Soc. (N.S.) 39(3), 355–405 (2002). https://doi.org/10.1090/S0273-0979-02-00941-2

    Article  MathSciNet  MATH  Google Scholar 

  20. Hedlund, G.A.: Geodesics on a two-dimensional Riemannian manifold with periodic coefficients. Ann. Math. (2) 33(4), 719–739 (1932). https://doi.org/10.2307/1968215

    Article  MathSciNet  MATH  Google Scholar 

  21. Kraft, D.: Measure-theoretic properties of level sets of distance functions. J. Geom. Anal. 26(4), 2777–2796 (2016). https://doi.org/10.1007/s12220-015-9648-9

    Article  MathSciNet  MATH  Google Scholar 

  22. Morse, H.M.: A fundamental class of geodesics on any closed surface of genus greater than one. Trans. Am. Math. Soc. 26(1), 25–60 (1924). https://doi.org/10.2307/1989225

    Article  MathSciNet  MATH  Google Scholar 

  23. Moser, J.: Minimal solutions of variational problems on a torus. Ann. Inst. H. Poincaré Anal. Non Linéaire 3(3), 229–272 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  24. Novaga, M., Valdinoci, E.: Closed curves of prescribed curvature and a pinning effect. Netw. Heterog. Media 6(1), 77–88 (2011). https://doi.org/10.3934/nhm.2011.6.77

    Article  MathSciNet  MATH  Google Scholar 

  25. Novaga, M., Valdinoci, E.: Bump solutions for the mesoscopic Allen–Cahn equation in periodic media. Calc. Var. Partial Differ. Equ. 40(1–2), 37–49 (2011). https://doi.org/10.1007/s00526-010-0332-4

    Article  MathSciNet  MATH  Google Scholar 

  26. Rabinowitz, P.H.: Minimax methods in critical point theory with applications to differential equations. In: CBMS Regional Conference Series in Mathematics, vol. 65. Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence (1986)

  27. Schneider, R.: Convex Bodies: The Brunn–Minkowski Theory, Encyclopedia of Mathematics and its Applications, vol. 151, Second expanded edn. Cambridge University Press, Cambridge (2014)

    Google Scholar 

  28. Valdinoci, E.: Plane-like minimizers in periodic media: jet flows and Ginzburg–Landau-type functionals. J. Reine Angew. Math. 574, 147–185 (2004). https://doi.org/10.1515/crll.2004.068

    MathSciNet  MATH  Google Scholar 

  29. Valdinoci, E.: A fractional framework for perimeters and phase transitions. Milan J. Math. 81(1), 1–23 (2013). https://doi.org/10.1007/s00032-013-0199-x

    Article  MathSciNet  MATH  Google Scholar 

  30. Wheeden, R.L., Zygmund, A.: Measure and Integral: An Introduction to Real Analysis. Pure and Applied Mathematics (Boca Raton), 2. CRC Press, Boca Raton (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matteo Novaga.

Additional information

Communicated by L. Ambrosio.

This work has been supported by the Andrew Sisson Fund 2017 and the Australian Research Council Discovery Project N.E.W. Nonlocal Equations at Work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cesaroni, A., Dipierro, S., Novaga, M. et al. Minimizers for nonlocal perimeters of Minkowski type. Calc. Var. 57, 64 (2018). https://doi.org/10.1007/s00526-018-1335-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00526-018-1335-9

Mathematics Subject Classification

Navigation