Skip to main content
Log in

The local stability of positive solutions to the Hammerstein equation with a nonmonotonic nemytskii operator

  • Published:
Monatshefte für Mathematik Aims and scope Submit manuscript

Abstract

LetE be a Banach lattice which consists of some functionsu:Ω→ℂ over a fixed domain Ω. This article is concerned with the local stability of a non-zero positive solutionu *E to the Hammerstein equationu(x)=\( = \int\limits_\Omega {k(x,y)f(y,u(y))d\mu } (y),\) x∈Ω, wherek≥0, andf:Ω×[0, ∞)→[0, ∞) is not necessarily increasing in the second variable. It is assumed thatf(x, 0)=0 and\(\left| {\frac{{\partial f(x,u)}}{{\partial u}}} \right|< \frac{{f(x,u)}}{u}\) forx∈Ω,u>0. Under some mild additional hypotheses onE, k, μ andf it is proved that the spectral radius of the Fréchet derivative atu * of the Hammerstein operator is less than one. Also the impact of local stability on secondary bifurcations is investigated. The proof of the main result is based on the spectral theory for completely continuous and irreducible positive operators on Banach lattices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Amann, H.: On the number of solutions of nonlinear equations in ordered Banach spaces. J. Funct. Anal.11, 346–384 (1972).

    Google Scholar 

  2. Amann, H.: Supersolutions, monotone iterations, and stability. J. Diff. Equat.21, 363–377 (1976).

    Google Scholar 

  3. Amann, H.: Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces. SIAM Rev.18, 620–709 (1976).

    Google Scholar 

  4. Chow, S.-N., Hale, J. K.: Methods of Bifurcation Theory. New York: Springer. 1982.

    Google Scholar 

  5. Crandall, M. G., Rabinowitz, P. H.: Bifurcation, perturbation of simple eigenvalues, and linearized stability. Arch. Rat. Mech. Anal.52, 161–180 (1973).

    Google Scholar 

  6. Dancer, E. N.: Global solution branches for positive mappings. Arch. Rat. Mech. Anal.52, 181–192 (1973).

    Google Scholar 

  7. Dancer, E. N.: On the structure of solutions of non-linear eigenvalue problems. Indiana Univ. Math. J.23, 1069–1076 (1974).

    Google Scholar 

  8. Dancer, E. N.: Solution branches for mappings in cones, and applications. Bull. Austr. Math. Soc.11, 131–143 (1974).

    Google Scholar 

  9. Deimling, K.: Nonlinear Functional Analysis. Berlin-Heidelberg-New York: Springer. 1985.

    Google Scholar 

  10. Hardin, D. P., Takáč, P., Webb, G. F.: A comparison of dispersal strategies for survival of spatially heterogeneous populations. SIAM J. Appl. Math. (1988). (In print.)

  11. Jörgens, K.: Lineare Integraloperatoren. Stuttgart: Teubner. 1970.

    Google Scholar 

  12. Krasnoselskii, M. A.: Positive Solutions of Operator Equations. Groningen: Noordhoff. 1964.

    Google Scholar 

  13. Krasnoselskii, M. A., Zabreiko, P. P.: Geometrical Methods of Nonlinear Analysis. Berlin-Heidelberg-New York: Springer. 1984.

    Google Scholar 

  14. Laetsch, T. W.: The number of solutions of a nonlinear two point boundary value problem. Indiana Univ. Math. J.20, 1–13 (1970).

    Google Scholar 

  15. Laetsch, T. W.: Uniqueness for sublinear boundary value problems. J. Diff. Equat.13, 13–23 (1973).

    Google Scholar 

  16. Leggett, R. W., Williams, L. R.: Multiple positive fixed points of nonlinear operators on ordered Banach spaces. Indiana Univ. Math. J.28, 673–688 (1979).

    Google Scholar 

  17. Nussbaum, R. D.: A global bifurcation theorem with applications to functional differential equations. J. Funct. Anal.19, 319–339 (1975).

    Google Scholar 

  18. Nussbaum, R. D.: A periodicity threshold theorem for some nonlinear integral equations. SIAM. J. Math. Anal.9, 356–376 (1978).

    Google Scholar 

  19. Nussbaum, R. D.: Periodic solutions of some nonlinear integral equations. In: Dynamical Systems; pp. 221–249. (A. Bednarek andL. Cesari, eds.) New York: Academic Press. 1977.

    Google Scholar 

  20. de Pagter, B.: Irreducible compact operators. Math. Z.192, 149–153 (1986).

    Google Scholar 

  21. Rabinowitz, P. H.: Some global results for nonlinear eigenvalue problems. J. Funct. Anal.7, 487–513 (1971).

    Google Scholar 

  22. Schaefer, H. H.: Topological Vector Spaces. Berlin-Heidelberg-New York: Springer. 1971.

    Google Scholar 

  23. Schaefer, H. H.: Banach Lattices and Positive Operators. Berlin-Heidelberg-New York: Springer. 1974.

    Google Scholar 

  24. Thieme, H. R.: On a class of Hammerstein integral equations. Manuscripta Math.29, 49–84 (1979).

    Google Scholar 

  25. Turner, R. E. L.: Transversality and cone maps. Arch. Rat. Mech. Anal.58, 151–179 (1975).

    Google Scholar 

  26. Williams, L. R., Leggett, R. W.: Multiple fixed point theorems for problems in chemical reactor theory. J. Math. Anal. Appl.69, 180–193 (1979).

    Google Scholar 

  27. Williams, L. R., Leggett, R. W.: Unique and multiple solutions of a family of differential equations modeling chemical reactions. SIAM J. Math. Anal.13, 122–123 (1982).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takáč, P. The local stability of positive solutions to the Hammerstein equation with a nonmonotonic nemytskii operator. Monatshefte für Mathematik 106, 313–335 (1988). https://doi.org/10.1007/BF01295289

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01295289

Keywords

Navigation