Skip to main content
Log in

Bifurcation Conditions for the Solutions of the Lyapunov Equation in a Hilbert Space

  • Published:
Journal of Mathematical Sciences Aims and scope Submit manuscript

We establish sufficient conditions for the bifurcation of solutions of the boundary-value problems for the Lyapunov equation in Hilbert spaces. The cases where the generating equation has or does not have solutions are analyzed. As an example, we consider the problem in the space l2 of sequences with matrices of countable dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. I. Arnold, Theory of Catastrophes [in Russian], Nauka, Moscow (1990).

    Google Scholar 

  2. R. Bellman, Introduction to Matrix Analysis, McGraw-Hill, New York (1960).

  3. M. M. Vainberg and V. A. Trenogin, Theory of Branching of the Solutions of Nonlinear Equations [in Russian], Nauka, Moscow (1969).

  4. Yu. L. Daletskii and M. G. Krein, Stability of Solutions of Differential Equations in Banach Spaces [in Russian], Nauka, Moscow (1970).

  5. S. G. Krein, Linear Differential Equations in Banach Spaces [in Russian], Nauka, Moscow (1967).

  6. S. G. Krein, Linear Equations in Banach Spaces [in Russian], Nauka, Moscow (1971).

  7. A. H. Nayfeh, Perturbation Methods, Wiley, New York (1973).

    MATH  Google Scholar 

  8. S. M. Chuiko, “Generalized Green operator of the Noetherian boundary-value problem for a matrix differential equation,” Izv. Vyssh. Uchebn. Zaved., Ser. Mat. No. 8, 74–83 (2016).

  9. B. Bamieh and M. Dahleh, “Energy amplification in channel flows with stochastic excitation,” Phys. Fluids, 13, 3258–3269 (2001).

    Article  MathSciNet  Google Scholar 

  10. R. Bhatia, “A note on the Lyapunov equation,” Linear Algebra Appl., 259, 71–76 (1997).

    Article  MathSciNet  Google Scholar 

  11. A. A. Boichuk and A. M. Samoilenko, Generalized Inverse Operators and Fredholm Boundary-Value Problems, De Gruyter, Berlin (2016).

  12. O. A. Boichuk and S. A. Krivosheya, “Criterion for the solvability of matrix equations of the Lyapunov type,” Ukr. Mat. Zh., 50, No. 8, 1021–1026 (1998); English translation: Ukr. Math. J., 50, No. 8, 1162–1169 (1998).

  13. A. N. Bondarev and V. N. Laptinskii, “Multipoint boundary-value problem for the Lyapunov equation in the case of strong degeneration of the boundary conditions,” Different. Equat., 47, No. 6, 778–786 (2011).

    Article  MathSciNet  Google Scholar 

  14. S. M. Chuiko, “On the solution of matrix Lyapunov equations,” Visn. Kharkiv. Univ., Ser. Mat. Prikl. Mat. Mekh., No. 1120, 85–94 (2014).

  15. R. Datko, “Extending a theorem of A. M. Lyapunov to Hilbert space,” J. Math. Anal. Appl., 32, 610–616 (1970).

  16. V. Druskin, L. Knizhnerman, and V. Simoncini, “Analysis of the rational Krylov subspace and ADI methods for solving the Lyapunov equation,” SIAM J. Numer. Anal., 49, No. 5, 1875–1898 (2011).

    Article  MathSciNet  Google Scholar 

  17. T. E. Duncana, B. Maslowski, and B. Pasik-Duncana, “Stochastic equations in Hilbert space with a multiplicative fractional Gaussian noise,” Stochast. Proc. Appl., 115, 1357–1383 (2005).

    Article  MathSciNet  Google Scholar 

  18. H. Kielhöfer, “On the Lyapunov stability of stationary solutions of semilinear parabolic differential equations,” J. Different. Equat., 22, 193–208 (1976).

    Article  MathSciNet  Google Scholar 

  19. V. I. Man��ko and M. R. Vilela, “Lyapunov exponent in quantum mechanics. A phase-space approach,” Physica D, 145, 330–348 (2000).

  20. E. V. Panasenko and O. O. Pokutnyi, “Boundary-value problems for the Lyapunov equation in Banach spaces,” Nelin. Kolyv., 19, No. 2, 240–246 (2016); English translation: J. Math. Sci., 223, No. 3, 298–304 (2017).

  21. E. V. Panasenko and O. O. Pokutnyi, “Boundary-value problems for differential equations in a Banach space with unbounded operatorin the linear part,” Nelin. Kolyv., 16, No. 4, 518–526 (2013); English translation: J. Math. Sci., 203, No. 3, 366–374 (2014).

  22. A. Pazy, “On the applicability of Lyapunov’s theorem in Hilbert space,” SIAM J. Math. Anal., 3, No. 2, 291–294 (1972).

    Article  MathSciNet  Google Scholar 

  23. O. O. Pokutnyi, “Generalized inverse operator in Fréchet, Banach, and Hilbert spaces,” Visn. Kyiv. Nats. Univ., Ser. Fiz.-Mat. Nauk., No 4, 158–161 (2013).

  24. K. M. Przyluski, ”The Lyapunov equation and the problem of stability for linear bounded discrete-time systems in Hilbert space,” Appl. Math. Optim., 6, No. 1, 97–112 (1980).

  25. I. G. Rosen and C.Wang, “A multilevel technique for the approximate solution of operator Lyapunov and algebraic Riccati equations,” SIAM J. Numer. Anal., 32, No. 2, 514–541 (1995).

  26. D. Sather, “Branching of solutions of an equation in Hilbert space,” Arch. Ration. Mech. Anal., 36, 47–64 (1970).

    Article  MathSciNet  Google Scholar 

  27. V, N. Phat and T. T. Kiet, “On the Lyapunov equation in Banach spaces and applications to control problems,” Int. J. Math. Math. Sci., 29, No. 3, 155–166 (2002).

  28. J. T.-Yu. Wen and M. J. Balas, “Robust adaptive control in Hilbert space,” J. Math. Anal. Appl., 143, 1–26 (1989).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Panasenko.

Additional information

Translated from Neliniini Kolyvannya, Vol. 20, No. 3, pp. 373–390, July–September, 2017.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panasenko, E.V., Pokutnyi, O.O. Bifurcation Conditions for the Solutions of the Lyapunov Equation in a Hilbert Space. J Math Sci 236, 313–332 (2019). https://doi.org/10.1007/s10958-018-4113-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10958-018-4113-5

Navigation