Skip to main content
Log in

Anti de Sitter black holes and branes in dynamical Chern-Simons gravity: perturbations, stability and the hydrodynamic modes

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

Dynamical Chern-Simons (DCS) theory is an extension of General Relativity in which the gravitational field is coupled to a scalar field through a parity violating term. We study perturbations of anti-de Sitter black holes and branes in such a theory, and show that the relevant equations reduce to a set of coupled ODEs which can be solved efficiently through a series expansion. We prove numerically that black holes and branes in DCS gravity are stable against gravitational and scalar perturbations in the entire parameter space. Furthermore, by applying the AdS/CFT duality, were late black hole perturbations to hydrodynamic quantities in the dual field theory, which is a (2 + 1)-dimensional isotropic fluid with broken spatial parity. The Chern-Simons term does not affect the entropy to viscosity ratio and the relaxation time, but instead quantities that enter the shear mode at order q 4 in the small momentum limit, for example the Hall viscosity and other quantities related to second and third order hydrodynamics. We provide explicit corrections to the gravitational hydrodynamic mode to first relevant order in the couplings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Deser, R. Jackiw and S. Templeton, Three-Dimensional Massive Gauge Theories, Phys. Rev. Lett. 48 (1982) 975 [SPIRES].

    Article  ADS  Google Scholar 

  2. A. Lue, L.-M. Wang and M. Kamionkowski, Cosmological signature of new parity-violating interactions, Phys. Rev. Lett. 83 (1999) 1506 [astro-ph/9812088] [SPIRES].

    Article  ADS  Google Scholar 

  3. R. Jackiw and S.Y. Pi, Chern-Simons modification of general relativity, Phys. Rev. D 68 (2003) 104012 [gr-qc/0308071] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  4. S. Alexander and N. Yunes, Chern-Simons Modified General Relativity, Phys. Rept. 480 (2009) 1 [arXiv:0907.2562] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  5. S. Weinberg, A Tree Theorem for Inflation, Phys. Rev. D 78 (2008) 063534 [arXiv:0805.3781] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  6. S.H.-S. Alexander, M.E. Peskin and M.M. Sheikh-Jabbari, Leptogenesis from gravity waves in models of inflation, Phys. Rev. Lett. 96 (2006) 081301 [hep-th/0403069] [SPIRES].

    Article  ADS  Google Scholar 

  7. J. García-Bellido, M. Garcia-Perez and A. Gonzalez-Arroyo, Chern-Simons production during preheating in hybrid inflation models, Phys. Rev. D 69 (2004) 023504 [hep-ph/0304285] [SPIRES].

    ADS  Google Scholar 

  8. S.H.S. Alexander and S.J. Gates, Jr., Can the string scale be related to the cosmic baryon asymmetry?, JCAP 06 (2006) 018 [hep-th/0409014] [SPIRES].

    ADS  Google Scholar 

  9. J. Polchinski, String theory. Vol. 2: Superstring theory and beyond, Cambridge Univ. Pr., Cambridge U.K. (1998).

    Book  Google Scholar 

  10. A. Ashtekar, A.P. Balachandran and S. Jo, The CP problem in quantum gravity, Int. J. Mod. Phys. A4 (1989) 1493 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  11. V. Taveras and N. Yunes, The Barbero-Immirzi Parameter as a Scalar Field: K-Inflation from Loop Quantum Gravity?, Phys. Rev. D 78 (2008) 064070 [arXiv:0807.2652] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  12. S. Mercuri and V. Taveras, Interaction of the Barbero–Immirzi Field with Matter and Pseudo-Scalar Perturbations, Phys. Rev. D 80 (2009) 104007 [arXiv:0903.4407] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  13. E. Barausse and T.P. Sotiriou, Perturbed Kerr Black Holes can probe deviations from General Relativity, Phys. Rev. Lett. 101 (2008) 099001 [arXiv:0803.3433] [SPIRES].

    Article  ADS  Google Scholar 

  14. E. Berti, V. Cardoso and A.O. Starinets, Quasinormal modes of black holes and black branes, Class. Quant. Grav. 26 (2009) 163001 [arXiv:0905.2975] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  15. V. Cardoso and L. Gualtieri, Perturbations of Schwarzschild black holes in Dynamical Chern-Simons modified gravity, Phys. Rev. D 80 (2009) 064008 [arXiv:0907.5008] [SPIRES].

    ADS  Google Scholar 

  16. C. Molina, P. Pani, V. Cardoso and L. Gualtieri, Gravitational signature of Schwarzschild black holes in dynamical Chern-Simons gravity, Phys. Rev. D 81 (2010) 124021 [arXiv:1004.4007] [SPIRES].

    ADS  Google Scholar 

  17. H. Ahmedov and A.N. Aliev, Black String and Gódel type Solutions of Chern-Simons Modified Gravity, Phys. Rev. D 82 (2010) 024043 [arXiv:1003.6017] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  18. O. Saremi and D.T. Son, Hall viscosity from gauge/gravity duality, arXiv:1103.4851 [SPIRES].

  19. J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [Adv. Theor. Math. Phys. 2 (1998) 231] [hep-th/9711200] [SPIRES].

    Article  MathSciNet  MATH  Google Scholar 

  20. P.K. Kovtun and A.O. Starinets, Quasinormal modes and holography, Phys. Rev. D 72 (2005) 086009 [hep-th/0506184] [SPIRES].

    ADS  Google Scholar 

  21. P. Kovtun, D.T. Son and A.O. Starinets, Viscosity in strongly interacting quantum field theories from black hole physics, Phys. Rev. Lett. 94 (2005) 111601 [hep-th/0405231] [SPIRES].

    Article  ADS  Google Scholar 

  22. S. Bhattacharyya, V.E. Hubeny, S. Minwalla and M. Rangamani, Nonlinear Fluid Dynamics from Gravity, JHEP 02 (2008) 045 [arXiv:0712.2456] [SPIRES].

    Article  ADS  Google Scholar 

  23. J. Erdmenger, M. Haack, M. Kaminski and A. Yarom, Fluid dynamics of R-charged black holes, JHEP 01 (2009) 055 [arXiv:0809.2488] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  24. J.P.S. Lemos, Cylindrical black hole in general relativity, Phys. Lett. B 353 (1995) 46 [gr-qc/9404041] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  25. T. Torii, K. Maeda and M. Narita, Scalar hair on the black hole in asymptotically anti-de Sitter spacetime, Phys. Rev. D 64 (2001) 044007 [SPIRES].

    MathSciNet  ADS  Google Scholar 

  26. A.S. Miranda, J. Morgan and V.T. Zanchin, Quasinormal modes of plane-symmetric black holes according to the AdS/CFT correspondence, JHEP 11 (2008) 030 [arXiv:0809.0297] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  27. J. Morgan, V. Cardoso, A.S. Miranda, C. Molina and V.T. Zanchin, Gravitational quasinormal modes of AdS black branes in d spacetime dimensions, JHEP 09 (2009) 117 [arXiv:0907.5011] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  28. G.T. Horowitz and V.E. Hubeny, Quasinormal modes of AdS black holes and the approach to thermal equilibrium, Phys. Rev. D 62 (2000) 024027 [hep-th/9909056] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  29. V. Cardoso and J.P.S. Lemos, Quasi-normal modes of Schwarzschild anti-de Sitter black holes: Electromagnetic and gravitational perturbations, Phys. Rev. D 64 (2001) 084017 [gr-qc/0105103] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  30. E. Berti, V. Cardoso and P. Pani, Breit-Wigner resonances and the quasinormal modes of anti-de Sitter black holes, Phys. Rev. D 79 (2009) 101501 [arXiv:0903.5311] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  31. V. Cardoso and J.P.S. Lemos, Quasi-normal modes of toroidal, cylindrical and planar black holes in anti-de Sitter spacetimes, Class. Quant. Grav. 18 (2001) 5257 [gr-qc/0107098] [SPIRES].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  32. R. Baier, P. Romatschke, D.T. Son, A.O. Starinets and M.A. Stephanov, Relativistic viscous hydrodynamics, conformal invariance and holography, JHEP 04 (2008) 100 [arXiv:0712.2451] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  33. M. Natsuume, String theory implications on causal hydrodynamics, Prog. Theor. Phys. Suppl. 174 (2008) 286 [arXiv:0807.1394] [SPIRES].

    Article  ADS  Google Scholar 

  34. M. Natsuume and T. Okamura, Causal hydrodynamics of gauge theory plasmas from AdS/CFT duality, Phys. Rev. D 77 (2008) 066014 [arXiv:0712.2916] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  35. G. Policastro, D.T. Son and A.O. Starinets, From AdS/CFT correspondence to hydrodynamics, JHEP 09 (2002) 043 [hep-th/0205052] [SPIRES].

    Article  MathSciNet  ADS  Google Scholar 

  36. G.D. Moore and K.A. Sohrabi, Kubo Formulae for Second-Order Hydrodynamic Coefficients, Phys. Rev. Lett. 106 (2011) 122302 [arXiv:1007.5333] [SPIRES].

    Article  ADS  Google Scholar 

  37. N. Banerjee and S. Dutta, Shear Viscosity to Entropy Density Ratio in Six Derivative Gravity, JHEP 07 (2009) 024 [arXiv:0903.3925] [SPIRES].

    Article  ADS  Google Scholar 

  38. A. Buchel, R.C. Myers and A. Sinha, Beyond η s =1/4π, JHEP 03 (2009) 084 [arXiv:0812.2521] [SPIRES].

    Article  ADS  Google Scholar 

  39. N. Banerjee and S. Dutta, Higher Derivative Corrections to Shear Viscosity from Graviton’s Effective Coupling, JHEP 03 (2009) 116 [arXiv:0901.3848] [SPIRES].

    Article  ADS  Google Scholar 

  40. M. Brigante, H. Liu, R.C. Myers, S. Shenker and S. Yaida, Viscosity Bound Violation in Higher Derivative Gravity, Phys. Rev. D 77 (2008) 126006 [arXiv:0712.0805] [SPIRES].

    ADS  Google Scholar 

  41. S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Building a Holographic Superconductor, Phys. Rev. Lett. 101 (2008) 031601 [arXiv:0803.3295] [SPIRES].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Térence Delsate.

Additional information

ArXiv ePrint:1103.5756

Rights and permissions

Reprints and permissions

About this article

Cite this article

Delsate, T., Cardoso, V. & Pani, P. Anti de Sitter black holes and branes in dynamical Chern-Simons gravity: perturbations, stability and the hydrodynamic modes. J. High Energ. Phys. 2011, 55 (2011). https://doi.org/10.1007/JHEP06(2011)055

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP06(2011)055

Keywords

Navigation