Skip to main content

Infinite Separation Between General and Chromatic Memory

  • Conference paper
  • First Online:
LATIN 2024: Theoretical Informatics (LATIN 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14579))

Included in the following conference series:

  • 190 Accesses

Abstract

In this paper, we construct a winning condition W over a finite set of colors such that, first, every finite arena has a strategy with 2 states of general memory which is optimal w.r.t. W, and second, there exists no k such that every finite arena has a strategy with k states of chromatic memory which is optimal w.r.t. W.

The author is funded by ANID - Millennium Science Initiative Program - Code ICN17002, and the National Center for Artificial Intelligence CENIA FB210017, Basal ANID.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
eBook
USD 99.00
Price excludes VAT (USA)
Softcover Book
USD 129.99
Price excludes VAT (USA)

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    There are papers that study these games over infinite graphs, but in this note we only work with finite graphs.

  2. 2.

    In their original definition, the “memory structure” (see Preliminaries) must be the same in all arenas. When C is finite, this definition is equivalent, because there are just finitely many chromatic memory structures up to a certain size. If none of them works for all arenas, one can construct a finite arena where none of them works.

  3. 3.

    We do not have to redefine S for every starting position. The same S can be played from any of them.

References

  1. Bloem, R., Chatterjee, K., Jobstmann, B.: Graph Games and Reactive Synthesis. In: Handbook of Model Checking, pp. 921–962. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-10575-8_27

    Chapter  Google Scholar 

  2. Bouyer, P., Randour, M., Vandenhove, P.: Characterizing omega-regularity through finite-memory determinacy of games on infinite graphs. Theoretics 2, 1–48 (2023)

    Article  MathSciNet  Google Scholar 

  3. Bouyer, P., Le Roux, S., Oualhadj, Y., Randour, M., Vandenhove, P.: Games where you can play optimally with arena-independent finite memory. Logical Methods Comput. Sci. 18.11:1–11:44 (2022)

    Google Scholar 

  4. Büchi, J.R., Landweber, L.H.: Solving sequential conditions by finite-state strategies. Trans. Am. Math. Soc. 138, 295–311 (1969)

    Article  MathSciNet  Google Scholar 

  5. Bouyer, P., Fijalkow, N., Randour, M., and Vandenhove, P.: How to play optimally for regular objectives? In: 50th International Colloquium on Automata, Languages, and Programming (ICALP 2023). Leibniz International Proceedings in Informatics (LIPIcs), vol. 261, pp. 118:1–118:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,

    Google Scholar 

  6. Casares, A.: On the minimisation of transition-based rabin automata and the chromatic memory requirements of muller conditions. In: Manea, F., Simpson, A. (eds.) 30th Eacsl Annual Conference on Computer Science Logic (CSL 2022), Dagstuhl, Germany. Leibniz International Proceedings in Informatics (LIPIcs), vol. 216, pp. 12:1–12:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022)

    Google Scholar 

  7. Casares, A., Colcombet, T., Lehtinen, K.: On the size of good-for-games Rabin automata and its link with the memory in Muller games. In: 349th International Colloquium on Automata, Languages, and Programming (ICALP ). Leibniz International Proceedings in Informatics (LIPIcs), vol. 229, pp. 117:1–117:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2022)

    Google Scholar 

  8. Chatterjee, K., Doyen, L., Henzinger, T.A., Raskin, J.-F.: Generalized mean-payoff and energy games. In: IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science (FSTTCS 2010). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2010)

    Google Scholar 

  9. Colcombet, T., Fijalkow, N., Horn, F.: Playing safe. In: 34th International Conference on Foundation of Software Technology and Theoretical Computer Science (FSTTCS 2014) Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2014)

    Google Scholar 

  10. Dziembowski, S., Jurdzinski, M., Walukiewicz, I.: How much memory is needed to win infinite games? In: Proceedings of Twelfth Annual IEEE Symposium on Logic in Computer Science, pp. 99–110. IEEE (1997)

    Google Scholar 

  11. Kopczyński, E.: Omega-regular half-positional winning conditions. In: Duparc, J., Henzinger, T.A. (eds.) CSL 2007. LNCS, vol. 4646, pp. 41–53. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74915-8_7

    Chapter  Google Scholar 

  12. Kopczyński, E.: Half-positional determinacy of infinite games. PhD thesis, Warsaw University (2008)

    Google Scholar 

  13. Kozachinskiy, A.: State complexity of chromatic memory in infinite-duration games. arXiv preprint arXiv:2201.09297 (2022)

  14. Le Roux, S.: Time-aware uniformization of winning strategies. In: Anselmo, M., Della Vedova, G., Manea, F., Pauly, A. (eds.) CiE 2020. LNCS, vol. 12098, pp. 193–204. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-51466-2_17

    Chapter  Google Scholar 

  15. Zielonka, W.: Infinite games on finitely coloured graphs with applications to automata on infinite trees. Theoret. Comput. Sci. 200(1–2), 135–183 (1998)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Kozachinskiy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kozachinskiy, A. (2024). Infinite Separation Between General and Chromatic Memory. In: Soto, J.A., Wiese, A. (eds) LATIN 2024: Theoretical Informatics. LATIN 2024. Lecture Notes in Computer Science, vol 14579. Springer, Cham. https://doi.org/10.1007/978-3-031-55601-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-55601-2_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-55600-5

  • Online ISBN: 978-3-031-55601-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics