Skip to main content

Determination of the Voltage Stability Index in DC Networks with CPLs: A GAMS Implementation

  • Conference paper
  • First Online:
Applied Computer Sciences in Engineering (WEA 2019)

Abstract

This paper addresses the voltage collapse analysis in direct-current (DC) power grids via nonlinear optimization approach. The formulation of this problem corresponds to an optimization problem, where the objective function is the maximization of the loadability consumption at all the constant power loads, subject to the conventional power flow balance equations. To solve this nonlinear non-convex optimization problem a large-scale nonlinear optimization package known as General Algebraic Modeling System (GAMS) is employed. Different nonlinear solvers available in GAMS are used to confirm that the optimal solution has been reached. A small 4-node test system is used to illustrate the GAMS implementation. Finally, two test systems with 21 and 33 nodes respectively, are used for simulation purposes in order to confirm both the effectiveness and robustness of the nonlinear model, and the proposed GAMS solution methodology.

This work was supported in part by the Administrative Department of Science, Technology, and Innovation of Colombia (COLCIENCIAS) through the National Scholarship Program under Grant 727-2015, in part by the Universidad Tecnológica de Bolívar under Project C2018P020 and in part by the Instituto Tecnológico Metropolitano under the project P17211.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
eBook
USD 84.99
Price excludes VAT (USA)
Softcover Book
USD 109.99
Price excludes VAT (USA)

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Parhizi, S., Lotfi, H., Khodaei, A., Bahramirad, S.: State of the art in research on microgrids: a review. IEEE Access 3, 890–925 (2015)

    Article  Google Scholar 

  2. Georgilakis, P.S., Hatziargyriou, N.D.: Optimal distributed generation placement in power distribution networks: models, methods, and future research. IEEE Trans. Power Syst. 28(3), 3420–3428 (2013)

    Article  Google Scholar 

  3. Samper, M.E., Reta, R.A.: Regulatory analysis of distributed generation installed by distribution utilities. IEEE Lat. Am. Trans. 13(3), 665–672 (2015)

    Article  Google Scholar 

  4. Elsayed, A.T., Mohamed, A.A., Mohammed, O.A.: DC microgrids and distribution systems: an overview. Electr. Power Syst. Res. 119, 407–417 (2015)

    Article  Google Scholar 

  5. Planas, E., Andreu, J., Gárate, J.I., Martínez De Alegría, I., Ibarra, E.: AC and DC technology in microgrids: a review. Renew. Sustain. Energy Rev. 43, 726–749 (2015)

    Article  Google Scholar 

  6. Montoya, O.D., Grisales-Noreña, L., González-Montoya, D., Ramos-Paja, C., Garces, A.: Linear power flow formulation for low-voltage DC power grids. Electr. Power Syst. Res. 163, 375–381 (2018)

    Article  Google Scholar 

  7. Montoya, O.D., Gil-González, W., Garces, A.: Optimal power flow on DC microgrids: a quadratic convex approximation. IEEE Trans. Circuits Syst. II 66(6), 1018–1022 (2019)

    Article  Google Scholar 

  8. Justo, J.J., Mwasilu, F., Lee, J., Jung, J.-W.: AC-microgrids versus DC-microgrids with distributed energy resources: a review. Renew. Sustain. Energy Rev. 24, 387–405 (2013)

    Article  Google Scholar 

  9. Nasirian, V., Moayedi, S., Davoudi, A., Lewis, F.L.: Distributed cooperative control of DC microgrids. IEEE Trans. Power Electron. 30(4), 2288–2303 (2015)

    Article  Google Scholar 

  10. Papadimitriou, C., Zountouridou, E., Hatziargyriou, N.: Review of hierarchical control in DC microgrids. Electr. Power Syst. Res. 122, 159–167 (2015). http://www.sciencedirect.com/science/article/pii/S0378779615000073

    Article  Google Scholar 

  11. Velasquez, O.S., Montoya, O.D., Garrido, V.M., Grisales-Noreña, L.F.: Optimal power flow in direct-current power grids via black hole optimization. AEEE Adv. Electr. Electron. Eng. 17(1), 24–32 (2019). http://advances.utc.sk/index.php/AEEE/article/view/3069

    Google Scholar 

  12. Garcés, A.: On the convergence of newton’s method in power flow studies for DC microgrids. IEEE Trans. Power Syst. 33(5), 5770–5777 (2018)

    Article  Google Scholar 

  13. Montoya, O.D., Gil-González, W., Garrido, V.M.: Voltage stability margin in DC grids with CPLs: a recursive newton-raphson approximation. IEEE Trans. Circuits Syst. II, 1–1 (2019)

    Google Scholar 

  14. Simpson-Porco, J.W., Dörfler, F., Bullo, F.: On resistive networks of constant-power devices. IEEE Trans. Circuits Syst. II 62(8), 811–815 (2015)

    Article  Google Scholar 

  15. Barabanov, N., Ortega, R., Griñó, R., Polyak, B.: On existence and stability of equilibria of linear time-invariant systems with constant power loads. IEEE Trans. Circuits Syst. I 63(1), 114–121 (2016)

    Article  MathSciNet  Google Scholar 

  16. Niazi, G., Lalwani, M.: PSO based optimal distributed generation placement and sizing in power distribution networks: a comprehensive review. In: 2017 International Conference on Computer, Communications and Electronics (Comptelix), pp. 305–311, July 2017

    Google Scholar 

  17. Rajalakshmi, J., Durairaj, S.: Review on optimal distributed generation placement using particle swarm optimization algorithms. In: 2016 International Conference on Emerging Trends in Engineering, Technology and Science (ICETETS), pp. 1–6, Feburary 2016

    Google Scholar 

  18. Grisales-Noreña, L.F., Gonzalez-Montoya, D., Ramos-Paja, C.A.: Optimal sizing and location of distributed generators based on PBIL and PSO techniques. Energies 11(1018), 1–27 (2018)

    Google Scholar 

  19. Montoya, O.D.: Numerical approximation of the maximum power consumption in DC-MGs with CPLs via an SDP model. IEEE Trans. Circuits Syst. II 66(4), 642–646 (2019)

    Article  Google Scholar 

  20. Vatani, M., Solati Alkaran, D., Sanjari, M.J., Gharehpetian, G.B.: Multiple distributed generation units allocation in distribution network for loss reduction based on a combination of analytical and genetic algorithm methods. IET Gener. Transm. Distrib. 10(1), 66–72 (2016)

    Article  Google Scholar 

  21. Yuan, H., Li, F., Wei, Y., Zhu, J.: Novel linearized power flow and linearized OPF models for active distribution networks with application in distribution LMP. IEEE Trans. Smart Grid 9(1), 438–448 (2018)

    Article  Google Scholar 

  22. Salomonsson, D., Soder, L., Sannino, A.: Protection of low-voltage DC microgrids. IEEE Trans. Power Del. 24(3), 1045–1053 (2009)

    Article  Google Scholar 

  23. Montoya, O.D., Gil-González, W., Grisales-Noreña, L.F.: Optimal power dispatch of DGs in DC power grids: a hybrid gauss-seidel-genetic-algorithm methodology for solving the OPF problem. WSEAS Trans. Power Syst. 13(33), 335–346 (2018). http://www.wseas.org/multimedia/journals/power/2018/a665116-598.pdf

    Google Scholar 

  24. Li, J., Liu, F., Wang, Z., Low, S.H., Mei, S.: Optimal power flow in stand-alone DC microgrids. IEEE Trans. Power Syst. 33(5), 5496–5506 (2018)

    Article  Google Scholar 

  25. Montoya, O.D., Gil-González, W., Garces, A.: Sequential quadratic programming models for solving the OPF problem in DC grids. Electr. Power Syst. Res. 169, 18–23 (2019)

    Article  Google Scholar 

  26. Montoya, O.D.: Solving a classical optimization problem using GAMS optimizer package: economic dispatch problem implementation. ing. cienc. 13(26), 39–63 (2017)

    Article  Google Scholar 

  27. GAMS Development Corp.: Gams free demo version, March 2019. https://www.gams.com/download/

  28. Nordman, B., Christensen, K.: DC local power distribution: technology, deployment, and pathways to success. IEEE Electrific. Mag. 4(2), 29–36 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oscar Danilo Montoya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Amin, W.T., Montoya, O.D., Grisales-Noreña, L.F. (2019). Determination of the Voltage Stability Index in DC Networks with CPLs: A GAMS Implementation. In: Figueroa-García, J., Duarte-González, M., Jaramillo-Isaza, S., Orjuela-Cañon, A., Díaz-Gutierrez, Y. (eds) Applied Computer Sciences in Engineering. WEA 2019. Communications in Computer and Information Science, vol 1052. Springer, Cham. https://doi.org/10.1007/978-3-030-31019-6_46

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-31019-6_46

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-31018-9

  • Online ISBN: 978-3-030-31019-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics