Skip to main content

Convex Optimization for the Optimal Power Flow on DC Distribution Systems

  • Chapter
  • First Online:
Handbook of Optimization in Electric Power Distribution Systems

Part of the book series: Energy Systems ((ENERGY))

Abstract

Most of renewable energy technologies and energy storage devices are operated in dc. Indeed, solar photovoltaic generation and batteries require a dc/ac converter in order to be integrated into a conventional ac distribution grid. Dc distribution emerges a suitable alternative that reduces the losses and increases reliability in modern smartgrids. Classical methodologies such as the optimal power flow require to be adapted to this new scenario. However, just as in the case of ac grids, the power flow in dc distribution grids is non-linear non-convex. Therefore, convex approximations are required in order to guarantee convergence and global optimality. Several approximations can be proposed including second order cone optimization, semidefinite programming and linealization. These approximations are analyzed theoretically and numerically in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
eBook
USD 149.00
Price excludes VAT (USA)
Softcover Book
USD 199.99
Price excludes VAT (USA)
Hardcover Book
USD 199.99
Price excludes VAT (USA)

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    There are more general definitions of affine spaces, however, this simple definition is enough for our purposes.

  2. 2.

    we maintain the absolute value representation for the sake of simplicity. Notice also that any software for disciplined convex programming, such as cvx and cvxpy, allows to include effortless norm constraints.

References

  1. Patterson, B.T.: Dc, come home: Dc microgrids and the birth of the “enernet”. IEEE Power Energ. Mag. 10(6), 60–69 (2012)

    Article  Google Scholar 

  2. Meng, L., Shafiee, Q., Trecate, G.F., Karimi, H., Fulwani, D., Lu, X., Guerrero, J.M.: Review on control of dc microgrids and multiple microgrid clusters. IEEE J. Emerging Sel. Top. Power Electron. 5(3), 928–948 (2017)

    Google Scholar 

  3. Dragicevic, T., Lu, X., Vasquez, J.C., Guerrero, J.M.: DC microgrids part i: A review of control strategies and stabilization technique. IEEE Trans. Power Electron. 31(7), 4876–4891 (2015)

    Google Scholar 

  4. Prabhala, V.A.K., Baddipadiga, B.P., Ferdowsi, M.: DC distribution systems - an overview. In: 2014 International Conference on Renewable Energy Research and Application (ICRERA), pp. 307–312 (2014)

    Google Scholar 

  5. Jin, C., Wang, P., Xiao, J., Tang, Y., Choo, F.H.: Implementation of hierarchical control in DC microgrids. IEEE Trans. Ind. Electron. 61(8), 4032–4042 (2014)

    Article  Google Scholar 

  6. Che, L., Shahidehpour, M.: DC microgrids: economic operation and enhancement of resilience by hierarchical control. IEEE Trans. Smart Grid 5(5), 2517–2526 (2014)

    Article  Google Scholar 

  7. Frank, S.M., Rebennack, S.: Optimal design of mixed ac-dc distribution systems for commercial buildings: a nonconvex generalized benders decomposition approach. Eur. J. Oper. Res. 242(3), 710–729 (2015)

    Article  Google Scholar 

  8. Stott, B., Jardim, J., Alsac, O.: DC power flow revisited. IEEE Trans. Power Syst. 24(3), 1290–1300 (2009)

    Article  Google Scholar 

  9. Frank, S., Rebennack, S.: An introduction to optimal power flow: Theory, formulation, and examples. IIE Trans. 48(12), 1172–1197 (2016)

    Article  Google Scholar 

  10. Krasko, V., Rebennack, S.: Chapter 15: Global Optimization: Optimal Power Flow Problem, pp. 187–205

    Chapter  Google Scholar 

  11. Nesterov, Y.: Introductory Lectures on Convex Programming Volume I: Basic course. Springer, Berlin (2008)

    Google Scholar 

  12. Nesterov, Y., Nemirovskii, A.: Interior Point Polynomial Algorithms in Convex Programming, vol. 1, p. 10, 1st edn. SIAM, Philadelphia (1994)

    Google Scholar 

  13. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University, New York (2004)

    Book  Google Scholar 

  14. Luenberger, D.: Optimization by Vector Space Methods. Wiley, New York (1969)

    Google Scholar 

  15. Kron, G.: Tensors for Circuits. Dover, United States (1942)

    Google Scholar 

  16. Lobo, M.S., Vandenberghe, L., Boyd, S., Lebret, H.: Applications of second-order cone programming. Linear Algebra Appl. 284(1), 193–228 (1998). International Linear Algebra Society (ILAS) Symposium on Fast Algorithms for Control, Signals and Image Processing

    Google Scholar 

  17. Vancenberghet, L., Boyd, S.: Semidefinite programming. SIAM Rev. 38(1), 49–95 (1996)

    Article  Google Scholar 

  18. Montoya, O.D., Grisales-Noreña, L.F., González-Montoya, D., Ramos-Paja, C.A., Garces, A.: Linear power flow formulation for low-voltage dc power grids. Electr. Pow. Syst. Res. 163, 375–381 (2018)

    Article  Google Scholar 

  19. Gan, L., Low, S.H.: Optimal power flow in direct current networks. IEEE Trans. Power Syst. 29(6), 2892–2904 (2014)

    Article  Google Scholar 

  20. Inc. CVX Research. CVX: Matlab Software for Disciplined Convex Programming, version 2.0 (2012). http://cvxr.com/cvx

  21. Hubbard, J.H., Hubbard, B.B.: Vector Calculus, Linear Algebra, and Differential Forms a Unified Approach. Prentice Hall, Upper Saddle River (1999)

    Google Scholar 

  22. Garces A.: Matlab Exchage web page. https://www.mathworks.com/matlabcentral/profile/authors/3009175-alejandro-garces. Accessed 30 Sept 2018

Download references

Acknowledgements

This work is a partial result of the project 111077657914, funded by the Colombian Administrative Department of Science, Technology, and Innovation (COLCIENCIAS), contract number 031-2018.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alejandro Garcés .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Garcés, A. (2020). Convex Optimization for the Optimal Power Flow on DC Distribution Systems. In: Resener, M., Rebennack, S., Pardalos, P., Haffner, S. (eds) Handbook of Optimization in Electric Power Distribution Systems. Energy Systems. Springer, Cham. https://doi.org/10.1007/978-3-030-36115-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-36115-0_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-36114-3

  • Online ISBN: 978-3-030-36115-0

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics