dbo:abstract
|
- En mathématiques, une singularité est en général un point, une valeur ou un cas dans lequel un certain objet mathématique n'est pas bien défini ou bien subit une transition. Ce terme peut donc avoir des significations très différentes en fonction du contexte. Par exemple, dans l'analyse élémentaire, on dit que la fonction x ↦ 1/x, définie sur un voisinage pointé de l'origine, admet une singularité en x = 0[réf. souhaitée]. En théorie des singularités, le terme prend un sens différent. On dit, par exemple, que la fonction x ↦ x2 admet une singularité en x = 0, pour dire simplement que sa dérivée s'annule.[réf. souhaitée] (fr)
- En mathématiques, une singularité est en général un point, une valeur ou un cas dans lequel un certain objet mathématique n'est pas bien défini ou bien subit une transition. Ce terme peut donc avoir des significations très différentes en fonction du contexte. Par exemple, dans l'analyse élémentaire, on dit que la fonction x ↦ 1/x, définie sur un voisinage pointé de l'origine, admet une singularité en x = 0[réf. souhaitée]. En théorie des singularités, le terme prend un sens différent. On dit, par exemple, que la fonction x ↦ x2 admet une singularité en x = 0, pour dire simplement que sa dérivée s'annule.[réf. souhaitée] (fr)
|
rdfs:comment
|
- En mathématiques, une singularité est en général un point, une valeur ou un cas dans lequel un certain objet mathématique n'est pas bien défini ou bien subit une transition. Ce terme peut donc avoir des significations très différentes en fonction du contexte. Par exemple, dans l'analyse élémentaire, on dit que la fonction x ↦ 1/x, définie sur un voisinage pointé de l'origine, admet une singularité en x = 0[réf. souhaitée]. En théorie des singularités, le terme prend un sens différent. On dit, par exemple, que la fonction x ↦ x2 admet une singularité en x = 0, pour dire simplement que sa dérivée s'annule.[réf. souhaitée] (fr)
- En mathématiques, une singularité est en général un point, une valeur ou un cas dans lequel un certain objet mathématique n'est pas bien défini ou bien subit une transition. Ce terme peut donc avoir des significations très différentes en fonction du contexte. Par exemple, dans l'analyse élémentaire, on dit que la fonction x ↦ 1/x, définie sur un voisinage pointé de l'origine, admet une singularité en x = 0[réf. souhaitée]. En théorie des singularités, le terme prend un sens différent. On dit, par exemple, que la fonction x ↦ x2 admet une singularité en x = 0, pour dire simplement que sa dérivée s'annule.[réf. souhaitée] (fr)
|