En algèbre linéaire, un projecteur (ou une projection) est une application linéaire qu'on peut présenter de deux façons équivalentes : * une projection linéaire associée à une décomposition de E comme somme de deux sous-espaces supplémentaires, c'est-à-dire qu'elle permet d'obtenir un des termes de la décomposition correspondante ; * une application linéaire idempotente : elle vérifie p2 = p. Dans un espace hilbertien ou même seulement préhilbertien, une projection pour laquelle les deux supplémentaires sont orthogonaux est appelée projection orthogonale.

Property Value
dbo:abstract
  • En algèbre linéaire, un projecteur (ou une projection) est une application linéaire qu'on peut présenter de deux façons équivalentes : * une projection linéaire associée à une décomposition de E comme somme de deux sous-espaces supplémentaires, c'est-à-dire qu'elle permet d'obtenir un des termes de la décomposition correspondante ; * une application linéaire idempotente : elle vérifie p2 = p. Dans un espace hilbertien ou même seulement préhilbertien, une projection pour laquelle les deux supplémentaires sont orthogonaux est appelée projection orthogonale. (fr)
  • En algèbre linéaire, un projecteur (ou une projection) est une application linéaire qu'on peut présenter de deux façons équivalentes : * une projection linéaire associée à une décomposition de E comme somme de deux sous-espaces supplémentaires, c'est-à-dire qu'elle permet d'obtenir un des termes de la décomposition correspondante ; * une application linéaire idempotente : elle vérifie p2 = p. Dans un espace hilbertien ou même seulement préhilbertien, une projection pour laquelle les deux supplémentaires sont orthogonaux est appelée projection orthogonale. (fr)
dbo:wikiPageID
  • 176873 (xsd:integer)
dbo:wikiPageLength
  • 6569 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 190848710 (xsd:integer)
dbo:wikiPageWikiLink
prop-fr:wikiPageUsesTemplate
dct:subject
rdfs:comment
  • En algèbre linéaire, un projecteur (ou une projection) est une application linéaire qu'on peut présenter de deux façons équivalentes : * une projection linéaire associée à une décomposition de E comme somme de deux sous-espaces supplémentaires, c'est-à-dire qu'elle permet d'obtenir un des termes de la décomposition correspondante ; * une application linéaire idempotente : elle vérifie p2 = p. Dans un espace hilbertien ou même seulement préhilbertien, une projection pour laquelle les deux supplémentaires sont orthogonaux est appelée projection orthogonale. (fr)
  • En algèbre linéaire, un projecteur (ou une projection) est une application linéaire qu'on peut présenter de deux façons équivalentes : * une projection linéaire associée à une décomposition de E comme somme de deux sous-espaces supplémentaires, c'est-à-dire qu'elle permet d'obtenir un des termes de la décomposition correspondante ; * une application linéaire idempotente : elle vérifie p2 = p. Dans un espace hilbertien ou même seulement préhilbertien, une projection pour laquelle les deux supplémentaires sont orthogonaux est appelée projection orthogonale. (fr)
rdfs:label
  • Proiezione (geometria) (it)
  • Projecteur (mathématiques) (fr)
  • Projektion (Lineare Algebra) (de)
  • Проєкційна матриця (uk)
  • إسقاط (جبر خطي) (ar)
  • 投影 (zh)
  • Proiezione (geometria) (it)
  • Projecteur (mathématiques) (fr)
  • Projektion (Lineare Algebra) (de)
  • Проєкційна матриця (uk)
  • إسقاط (جبر خطي) (ar)
  • 投影 (zh)
rdfs:seeAlso
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageDisambiguates of
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is oa:hasTarget of
is foaf:primaryTopic of