Property |
Value |
dbo:abstract
|
- En géométrie, le cube du prince Rupert (nommé d'après le Prince Rupert du Rhin) est le plus grand cube pouvant passer à travers un trou pratiqué dans un cube unitaire, i.e. un cube d'arête 1, sans séparer le cube en deux parties. La longueur de son arête est approximativement 6 % plus longue que celle du cube au travers duquel il passe. Le problème consistant à trouver le plus grand carré tenant entièrement dans un cube unitaire est directement lié et possède la même solution. (fr)
- En géométrie, le cube du prince Rupert (nommé d'après le Prince Rupert du Rhin) est le plus grand cube pouvant passer à travers un trou pratiqué dans un cube unitaire, i.e. un cube d'arête 1, sans séparer le cube en deux parties. La longueur de son arête est approximativement 6 % plus longue que celle du cube au travers duquel il passe. Le problème consistant à trouver le plus grand carré tenant entièrement dans un cube unitaire est directement lié et possède la même solution. (fr)
|
dbo:namedAfter
| |
dbo:thumbnail
| |
dbo:wikiPageID
| |
dbo:wikiPageLength
|
- 14735 (xsd:nonNegativeInteger)
|
dbo:wikiPageRevisionID
| |
dbo:wikiPageWikiLink
| |
prop-fr:nomUrl
|
- PrinceRupertsCube (fr)
- PrinceRupertsCube (fr)
|
prop-fr:titre
|
- Cube du prince Rupert (fr)
- Cube du prince Rupert (fr)
|
prop-fr:wikiPageUsesTemplate
| |
dct:subject
| |
rdfs:comment
|
- En géométrie, le cube du prince Rupert (nommé d'après le Prince Rupert du Rhin) est le plus grand cube pouvant passer à travers un trou pratiqué dans un cube unitaire, i.e. un cube d'arête 1, sans séparer le cube en deux parties. La longueur de son arête est approximativement 6 % plus longue que celle du cube au travers duquel il passe. Le problème consistant à trouver le plus grand carré tenant entièrement dans un cube unitaire est directement lié et possède la même solution. (fr)
- En géométrie, le cube du prince Rupert (nommé d'après le Prince Rupert du Rhin) est le plus grand cube pouvant passer à travers un trou pratiqué dans un cube unitaire, i.e. un cube d'arête 1, sans séparer le cube en deux parties. La longueur de son arête est approximativement 6 % plus longue que celle du cube au travers duquel il passe. Le problème consistant à trouver le plus grand carré tenant entièrement dans un cube unitaire est directement lié et possède la même solution. (fr)
|
rdfs:label
|
- Cube du prince Rupert (fr)
- Cubo do Príncipe Ruperto (pt)
- Prins Ruperts kub (sv)
- Куб принца Руперта (ru)
- Cube du prince Rupert (fr)
- Cubo do Príncipe Ruperto (pt)
- Prins Ruperts kub (sv)
- Куб принца Руперта (ru)
|
rdfs:seeAlso
| |
owl:sameAs
| |
prov:wasDerivedFrom
| |
foaf:depiction
| |
foaf:isPrimaryTopicOf
| |
is dbo:wikiPageDisambiguates
of | |
is dbo:wikiPageWikiLink
of | |
is oa:hasTarget
of | |
is foaf:primaryTopic
of | |