Property |
Value |
dbo:abstract
|
- L'axiome de fondation, encore appelé axiome de régularité, est l'un des axiomes de la théorie des ensembles. Introduit par Abraham Fraenkel, Thoralf Skolem (1922) et John von Neumann (1925), il joue un grand rôle dans cette théorie, alors que les mathématiciens ne l'utilisent jamais ailleurs, même s'ils le considèrent souvent comme intuitivement vérifié. L'axiome de fondation fait ou non partie des axiomes de ZF (et ZFC) suivant les ouvrages. Dans la suite, on choisit de prendre ZF et ZFC sans axiome de fondation. (fr)
- L'axiome de fondation, encore appelé axiome de régularité, est l'un des axiomes de la théorie des ensembles. Introduit par Abraham Fraenkel, Thoralf Skolem (1922) et John von Neumann (1925), il joue un grand rôle dans cette théorie, alors que les mathématiciens ne l'utilisent jamais ailleurs, même s'ils le considèrent souvent comme intuitivement vérifié. L'axiome de fondation fait ou non partie des axiomes de ZF (et ZFC) suivant les ouvrages. Dans la suite, on choisit de prendre ZF et ZFC sans axiome de fondation. (fr)
|
dbo:isPartOf
| |
dbo:wikiPageExternalLink
| |
dbo:wikiPageID
| |
dbo:wikiPageLength
|
- 7157 (xsd:nonNegativeInteger)
|
dbo:wikiPageRevisionID
| |
dbo:wikiPageWikiLink
| |
prop-fr:année
| |
prop-fr:isbn
| |
prop-fr:langue
| |
prop-fr:lienAuteur
|
- Thomas Jech (fr)
- Thomas Jech (fr)
|
prop-fr:nom
| |
prop-fr:numéroD'édition
| |
prop-fr:pagesTotales
| |
prop-fr:prénom
| |
prop-fr:présentationEnLigne
| |
prop-fr:sousTitre
|
- The Third Millennium Edition, revised and expanded (fr)
- The Third Millennium Edition, revised and expanded (fr)
|
prop-fr:titre
|
- Set Theory (fr)
- Set Theory (fr)
|
prop-fr:wikiPageUsesTemplate
| |
prop-fr:éditeur
| |
dct:subject
| |
rdfs:comment
|
- L'axiome de fondation, encore appelé axiome de régularité, est l'un des axiomes de la théorie des ensembles. Introduit par Abraham Fraenkel, Thoralf Skolem (1922) et John von Neumann (1925), il joue un grand rôle dans cette théorie, alors que les mathématiciens ne l'utilisent jamais ailleurs, même s'ils le considèrent souvent comme intuitivement vérifié. L'axiome de fondation fait ou non partie des axiomes de ZF (et ZFC) suivant les ouvrages. Dans la suite, on choisit de prendre ZF et ZFC sans axiome de fondation. (fr)
- L'axiome de fondation, encore appelé axiome de régularité, est l'un des axiomes de la théorie des ensembles. Introduit par Abraham Fraenkel, Thoralf Skolem (1922) et John von Neumann (1925), il joue un grand rôle dans cette théorie, alors que les mathématiciens ne l'utilisent jamais ailleurs, même s'ils le considèrent souvent comme intuitivement vérifié. L'axiome de fondation fait ou non partie des axiomes de ZF (et ZFC) suivant les ouvrages. Dans la suite, on choisit de prendre ZF et ZFC sans axiome de fondation. (fr)
|
rdfs:label
|
- Axiom of regularity (en)
- Axioma da regularidade (pt)
- Axioma de regularidad (es)
- Axiome de fondation (fr)
- Аксиома регулярности (ru)
- Аксіома регулярності (uk)
|
rdfs:seeAlso
| |
owl:sameAs
| |
prov:wasDerivedFrom
| |
foaf:isPrimaryTopicOf
| |
is dbo:wikiPageDisambiguates
of | |
is dbo:wikiPageRedirects
of | |
is dbo:wikiPageWikiLink
of | |
is oa:hasTarget
of | |
is foaf:primaryTopic
of | |