Generic placeholder image

The International Journal of Gastroenterology and Hepatology Diseases

Editor-in-Chief

ISSN (Print): 2666-2906
ISSN (Online): 2666-2914

Review Article

Gut Microbiota Dysbiosis in the Pathogenesis of Metabolic-dysfunction Associated Steatotic Liver Disease (MASLD)

Author(s): Gh Jeelani Mir and Nissar Ul Ashraf*

Volume 3, 2024

Published on: 10 July, 2024

Article ID: e100724231827 Pages: 11

DOI: 10.2174/0126662906299478240614100954

Price: $65

Open Access Journals Promotions 2
Abstract

Metabolic-dysfunction-associated steatotic liver disease (MASLD), previously referred to as nonalcoholic fatty liver disease (NAFLD), affecting approximately 30% of the global population. Projections suggest that MASLD incidence may rise by up to 56% over the next decade. MASLD has become the fastest-growing cause of hepatocellular carcinoma (HCC) in the USA, France, UK, and other regions worldwide. The prevalence of MASLD and MASLD-related liver damage is expected to parallel the increasing rates of obesity and type 2 Diabetes Mellitus (T2DM) globally. The factors contributing to MASLD development and its progression to metabolic-dysfunction- associated steatohepatitis (MASH), fibrosis, cirrhosis, and HCC remain poorly understood. Evidence from cell-based, animal-based, and human-subject studies suggests that insulin resistance, endoplasmic reticulum stress, oxidative stress, impaired autophagy, genetics, epigenetics, reduced immune surveillance, increased gut inflammation, and gut dysbiosis are crucial events in MASLD pathogenesis. In recent years, dysregulation of gut microbiota has emerged as a potential mechanism implicated in MASLD and MASLD-related hepatocarcinogenesis. This review briefly outlines the mechanistic events significant for MASLD pathogenesis. Additionally, it offers insight into dysregulated gut microbiota and its correlation with MASLD and MASLD-related liver damage. Furthermore, it highlights pertinent questions for cell and microbiologists in the MASLD research field. It underscores the necessity for identifying factors leading to gut microbiome dysregulation in MASLD and MASH pathogenesis. Identifying these factors could aid in the development of novel strategies for managing MASLD and MASLD-related liver damage.

Keywords: MASLD/NAFLD, MASH/NASH, Insulin resistance, gut microbiome, liver damage, fibrosis, cirrhosis, HCC.

[1]
Ashraf NU, Sheikh TA. Endoplasmic reticulum stress and oxidative stress in the pathogenesis of non-alcoholic fatty liver disease. Free Radic Res 2015; 49(12): 1405-18.
[http://dx.doi.org/10.3109/10715762.2015.1078461] [PMID: 26223319]
[2]
Ashraf NU, Altaf M. Epigenetics: An emerging field in the pathogenesis of nonalcoholic fatty liver disease. Mutat Res Rev Mutat Res 2018; 778: 1-12.
[http://dx.doi.org/10.1016/j.mrrev.2018.07.002] [PMID: 30454678]
[3]
Danford CJ, Lai M. NAFLD: A multisystem disease that requires a multidisciplinary approach. Frontline Gastroenterol 2019; 10(4): 328-9.
[http://dx.doi.org/10.1136/flgastro-2019-101235] [PMID: 31682642]
[4]
Riazi K, Azhari H, Charette J, et al. The prevalence and incidence of NAFLD worldwide: A systematic review and metaanalysis. J Gastroenterol Hepatol 2022; S2468-1253(00165)
[5]
Teng ML, Ng CH, Huang DQ, et al. Global incidence and prevalence of non-alcoholic fatty liver disease. Clin Mol Hepatol 2022; 29: S32-42.
[PMID: 36517002]
[6]
Wong RJ, Aguilar M, Cheung R, et al. Nonalcoholic steatohepatitis is the second leading etiology of liver disease among adults awaiting liver transplantation in the United States. Gastroenterology 2015; 148(3): 547-55.
[http://dx.doi.org/10.1053/j.gastro.2014.11.039] [PMID: 25461851]
[7]
Charlton M. Evolving aspects of liver transplantation for nonalcoholic steatohepatitis. Curr Opin Organ Transplant 2013; 18(3): 251-8.
[http://dx.doi.org/10.1097/MOT.0b013e3283615d30] [PMID: 23652610]
[8]
Charlton MR, Burns JM, Pedersen RA, Watt KD, Heimbach JK, Dierkhising RA. Frequency and outcomes of liver transplantation for nonalcoholic steatohepatitis in the United States. Gastroenterology 2011; 141(4): 1249-53.
[http://dx.doi.org/10.1053/j.gastro.2011.06.061] [PMID: 21726509]
[9]
Younossi Z, Stepanova M, Ong J P, et al. Nonalcoholic steatohepatitis is the fastest growing cause of hepatocellular carcinoma in liver transplant candidates. Clin Gastroenterol Hepatol 2019; 17: 748-55. e743.
[http://dx.doi.org/10.1016/j.cgh.2018.05.057]
[10]
Younossi Z, Anstee QM, Marietti M, et al. Global burden of NAFLD and NASH: Trends, predictions, risk factors and prevention. Nat Rev Gastroenterol Hepatol 2018; 15(1): 11-20.
[http://dx.doi.org/10.1038/nrgastro.2017.109] [PMID: 28930295]
[11]
Younossi ZM, Koenig AB, Abdelatif D, Fazel Y, Henry L, Wymer M. Global epidemiology of nonalcoholic fatty liver disease—Meta‐analytic assessment of prevalence, incidence, and outcomes. Hepatology 2016; 64(1): 73-84.
[http://dx.doi.org/10.1002/hep.28431] [PMID: 26707365]
[12]
Wu Y, Zheng Q, Zou B, et al. The epidemiology of NAFLD in mainland China with analysis by adjusted gross regional domestic product: A meta-analysis. Hepatol Int 2020; 14(2): 259-69.
[http://dx.doi.org/10.1007/s12072-020-10023-3] [PMID: 32130675]
[13]
Eguchi Y, Hyogo H, Ono M, et al. Prevalence and associated metabolic factors of nonalcoholic fatty liver disease in the general population from 2009 to 2010 in Japan: A multicenter large retrospective study. J Gastroenterol 2012; 47(5): 586-95.
[http://dx.doi.org/10.1007/s00535-012-0533-z] [PMID: 22328022]
[14]
Das K, Das K, Mukherjee PS, et al. Nonobese population in a developing country has a high prevalence of nonalcoholic fatty liver and significant liver disease. Hepatology 2010; 51(5): 1593-602.
[http://dx.doi.org/10.1002/hep.23567] [PMID: 20222092]
[15]
Amarapurkar D, Kamani P, Patel N, et al. Prevalence of non-alcoholic fatty liver disease: Population based study. Ann Hepatol 2007; 6(3): 161-3.
[http://dx.doi.org/10.1016/S1665-2681(19)31922-2] [PMID: 17786142]
[16]
Singh SP, Nayak S, Swain M, et al. Prevalence of nonalcoholic fatty liver disease in coastal eastern India: A preliminary ultrasonographic survey. Trop Gastroenterol 2004; 25: 76-9.
[17]
Nayak NC, Vasdev N, Saigal S, Soin AS. End-stage nonalcoholic fatty liver disease: Evaluation of pathomorphologic features and relationship to cryptogenic cirrhosis from study of explant livers in a living donor liver transplant program. Hum Pathol 2010; 41(3): 425-30.
[http://dx.doi.org/10.1016/j.humpath.2009.06.021] [PMID: 19954815]
[18]
Fan JG, Kim SU, Wong VWS. New trends on obesity and NAFLD in Asia. J Hepatol 2017; 67(4): 862-73.
[http://dx.doi.org/10.1016/j.jhep.2017.06.003] [PMID: 28642059]
[19]
Dassanayake AS, Kasturiratne A, Rajindrajith S, et al. Prevalence and risk factors for non‐alcoholic fatty liver disease among adults in an urban Sri Lankan population. J Gastroenterol Hepatol 2009; 24(7): 1284-8.
[http://dx.doi.org/10.1111/j.1440-1746.2009.05831.x] [PMID: 19476560]
[20]
Goh SC, Ho ELM, Goh KL. Prevalence and risk factors of non-alcoholic fatty liver disease in a multiracial suburban Asian population in Malaysia. Hepatol Int 2013; 7(2): 548-54.
[http://dx.doi.org/10.1007/s12072-012-9359-2] [PMID: 26201786]
[21]
Chow W, Tai E, Lian S, Tan C, Sng I, Ng H. Significant non-alcoholic fatty liver disease is found in non-diabetic, pre-obese Chinese in Singapore. Singapore Med J 2007; 48(8): 752-7.
[22]
Kruger FC, Daniels C, Kidd M, et al. Non-alcoholic fatty liver disease (NAFLD) in the Western Cape: A descriptive anaylsis. S Afr Med J 2010; 100(3): 168-71.
[http://dx.doi.org/10.7196/SAMJ.1422] [PMID: 20459941]
[23]
Almobarak AO, Barakat S, Khalifa MH, Elhoweris MH, Elhassan TM, Ahmed MH. Non alcoholic fatty liver disease (NAFLD) in a Sudanese population: What is the prevalence and risk factors? Arab J Gastroenterol 2014; 15(1): 12-5.
[http://dx.doi.org/10.1016/j.ajg.2014.01.008] [PMID: 24630507]
[24]
Olusanya TO, Lesi OA, Adeyomoye AA, Fasanmade OA. Non alcoholic fatty liver disease in Nigerian population with type II diabetes mellitus. Pan Afr Med J 2016; 24: 20.
[http://dx.doi.org/10.11604/pamj.2016.24.20.8181] [PMID: 27583084]
[25]
Browning JD, Horton JD. Molecular mediators of hepatic steatosis and liver injury. J Clin Invest 2004; 114(2): 147-52.
[http://dx.doi.org/10.1172/JCI200422422] [PMID: 15254578]
[26]
Anderson N, Borlak J. Molecular mechanisms and therapeutic targets in steatosis and steatohepatitis. Pharmacol Rev 2008; 60(3): 311-57.
[http://dx.doi.org/10.1124/pr.108.00001] [PMID: 18922966]
[27]
Byrne CD, Targher G. NAFLD: A multisystem disease. J Hepatol 2015; 62(S1): S47-64.
[http://dx.doi.org/10.1016/j.jhep.2014.12.012] [PMID: 25920090]
[28]
Day CP, James OFW. Steatohepatitis: A tale of two “hits”? Gastroenterology 1998; 114(4): 842-5.
[http://dx.doi.org/10.1016/S0016-5085(98)70599-2] [PMID: 9547102]
[29]
Buzzetti E, Pinzani M, Tsochatzis EA. The multiple-hit pathogenesis of non-alcoholic fatty liver disease (NAFLD). Metabolism 2016; 65(8): 1038-48.
[http://dx.doi.org/10.1016/j.metabol.2015.12.012] [PMID: 26823198]
[30]
Marchesini G, Brizi M, Labate MAM, et al. Association of nonalcoholic fatty liver disease with insulin resistance. Am J Med 1999; 107(5): 450-5.
[http://dx.doi.org/10.1016/S0002-9343(99)00271-5] [PMID: 10569299]
[31]
Schwimmer JB, Deutsch R, Rauch JB, Behling C, Newbury R, Lavine JE. Obesity, insulin resistance, and other clinicopathological correlates of pediatric nonalcoholic fatty liver disease. J Pediatr 2003; 143(4): 500-5.
[http://dx.doi.org/10.1067/S0022-3476(03)00325-1] [PMID: 14571229]
[32]
Manco M. Insulin resistance and NAFLD: A dangerous liaison beyond the genetics. Children 2017; 4(8): 74.
[http://dx.doi.org/10.3390/children4080074] [PMID: 28805745]
[33]
Utzschneider KM, Kahn SE. Review: The role of insulin resistance in nonalcoholic fatty liver disease. J Clin Endocrinol Metab 2006; 91(12): 4753-61.
[http://dx.doi.org/10.1210/jc.2006-0587] [PMID: 16968800]
[34]
Koo SH, Dutcher AK, Towle HC. Glucose and insulin function through two distinct transcription factors to stimulate expression of lipogenic enzyme genes in liver. J Biol Chem 2001; 276(12): 9437-45.
[http://dx.doi.org/10.1074/jbc.M010029200] [PMID: 11112788]
[35]
Shimomura I, Bashmakov Y, Horton JD. Increased levels of nuclear SREBP-1c associated with fatty livers in two mouse models of diabetes mellitus. J Biol Chem 1999; 274(42): 30028-32.
[http://dx.doi.org/10.1074/jbc.274.42.30028] [PMID: 10514488]
[36]
Yahagi N, Shimano H, Hasty AH, et al. Absence of sterol regulatory element-binding protein-1 (SREBP-1) ameliorates fatty livers but not obesity or insulin resistance in Lep(ob)/Lep(ob) mice. J Biol Chem 2002; 277(22): 19353-7.
[http://dx.doi.org/10.1074/jbc.M201584200] [PMID: 11923308]
[37]
Iizuka K, Bruick RK, Liang G, Horton JD, Uyeda K. Deficiency of carbohydrate response element-binding protein (ChREBP) reduces lipogenesis as well as glycolysis. Proc Natl Acad Sci 2004; 101(19): 7281-6.
[http://dx.doi.org/10.1073/pnas.0401516101] [PMID: 15118080]
[38]
Edvardsson U, Bergström M, Alexandersson M, Bamberg K, Ljung B, Dahllöf B. Rosiglitazone (BRL49653), a PPARγ-selective agonist, causes peroxisome proliferator-like liver effects in obese mice. J Lipid Res 1999; 40(7): 1177-84.
[http://dx.doi.org/10.1016/S0022-2275(20)33479-9] [PMID: 10393202]
[39]
Matsusue K, Haluzik M, Lambert G, et al. Liver-specific disruption of PPARγ in leptin-deficient mice improves fatty liver but aggravates diabetic phenotypes. J Clin Invest 2003; 111(5): 737-47.
[http://dx.doi.org/10.1172/JCI200317223] [PMID: 12618528]
[40]
Gavrilova O, Haluzik M, Matsusue K, et al. Liver peroxisome proliferator-activated receptor γ contributes to hepatic steatosis, triglyceride clearance, and regulation of body fat mass. J Biol Chem 2003; 278(36): 34268-76.
[http://dx.doi.org/10.1074/jbc.M300043200] [PMID: 12805374]
[41]
Ben-Moshe S, Itzkovitz S. Spatial heterogeneity in the mammalian liver. Nat Rev Gastroenterol Hepatol 2019; 16(7): 395-410.
[http://dx.doi.org/10.1038/s41575-019-0134-x] [PMID: 30936469]
[42]
Schulze RJ, Schott MB, Casey CA, Tuma PL, McNiven MA. The cell biology of the hepatocyte: A membrane trafficking machine. J Cell Biol 2019; 218(7): 2096-112.
[http://dx.doi.org/10.1083/jcb.201903090] [PMID: 31201265]
[43]
Lebeaupin C, Vallée D, Hazari Y, Hetz C, Chevet E, Maitre BB. Endoplasmic reticulum stress signalling and the pathogenesis of non-alcoholic fatty liver disease. J Hepatol 2018; 69(4): 927-47.
[http://dx.doi.org/10.1016/j.jhep.2018.06.008] [PMID: 29940269]
[44]
Chen Z, Tian R, She Z, Cai J, Li H. Role of oxidative stress in the pathogenesis of nonalcoholic fatty liver disease. Free Radic Biol Med 2020; 152: 116-41.
[http://dx.doi.org/10.1016/j.freeradbiomed.2020.02.025] [PMID: 32156524]
[45]
Liu GY, Sabatini DM. mTOR at the nexus of nutrition, growth, ageing and disease. Nat Rev Mol Cell Biol 2020; 21(4): 183-203.
[http://dx.doi.org/10.1038/s41580-019-0199-y] [PMID: 31937935]
[46]
Feng J, Qiu S, Zhou S, et al. mTOR: A potential new target in nonalcoholic fatty liver disease. Int J Mol Sci 2022; 23(16): 9196.
[http://dx.doi.org/10.3390/ijms23169196] [PMID: 36012464]
[47]
Czaja MJ. Function of autophagy in nonalcoholic fatty liver disease. Dig Dis Sci 2016; 61(5): 1304-13.
[http://dx.doi.org/10.1007/s10620-015-4025-x] [PMID: 26725058]
[48]
Cho CS, Park HW, Ho A, et al. Lipotoxicity induces hepatic protein inclusions through TANK binding kinase 1–mediated p62/sequestosome 1 phosphorylation. Hepatology 2018; 68(4): 1331-46.
[http://dx.doi.org/10.1002/hep.29742] [PMID: 29251796]
[49]
Mushtaq A, Ashraf NU, Altaf M. The mTORC1–G9a–H3K9me2 axis negatively regulates autophagy in fatty acid–induced hepatocellular lipotoxicity. J Biol Chem 2023; 299(3): 102937.
[http://dx.doi.org/10.1016/j.jbc.2023.102937] [PMID: 36690274]
[50]
Mikolasevic I, Milic S, Wensveen TT, et al. Nonalcoholic fatty liver disease - A multisystem disease? World J Gastroenterol 2016; 22(43): 9488-505.
[http://dx.doi.org/10.3748/wjg.v22.i43.9488] [PMID: 27920470]
[51]
Chou HH, Chien WH, Wu LL, et al. Age-related immune clearance of hepatitis B virus infection requires the establishment of gut microbiota. Proc Natl Acad Sci 2015; 112(7): 2175-80.
[http://dx.doi.org/10.1073/pnas.1424775112] [PMID: 25646429]
[52]
Wang J, Wang Y, Zhang X, et al. Gut microbial dysbiosis is associated with altered hepatic functions and serum metabolites in chronic hepatitis B patients. Front Microbiol 2017; 8: 2222.
[http://dx.doi.org/10.3389/fmicb.2017.02222] [PMID: 29180991]
[53]
Chierico DF, Nobili V, Vernocchi P, et al. Gut microbiota profiling of pediatric nonalcoholic fatty liver disease and obese patients unveiled by an integrated meta‐omics‐based approach. Hepatology 2017; 65(2): 451-64.
[http://dx.doi.org/10.1002/hep.28572] [PMID: 27028797]
[54]
Yun Y, Kim HN, Lee E, et al. Fecal and blood microbiota profiles and presence of nonalcoholic fatty liver disease in obese versus lean subjects. PLoS One 2019; 14(3): e0213692.
[http://dx.doi.org/10.1371/journal.pone.0213692] [PMID: 30870486]
[55]
Tchkonia T, Palmer AK, Kirkland JL. New horizons: Novel approaches to enhance healthspan through targeting cellular senescence and related aging mechanisms. J Clin Endocrinol Metab 2021; 106(3): e1481-7.
[http://dx.doi.org/10.1210/clinem/dgaa728] [PMID: 33155651]
[56]
Schwimmer JB, Johnson JS, Angeles JE, et al. Microbiome signatures associated with steatohepatitis and moderate to severe fibrosis in children with nonalcoholic fatty liver disease. Gastroenterology 2019; 157(4): 1109-22.
[http://dx.doi.org/10.1053/j.gastro.2019.06.028] [PMID: 31255652]
[57]
Gluba A, Banach M, Hannam S, Mikhailidis DP, Sakowicz A, Rysz J. The role of toll-like receptors in renal diseases. Nat Rev Nephrol 2010; 6(4): 224-35.
[http://dx.doi.org/10.1038/nrneph.2010.16] [PMID: 20177402]
[58]
Zhuo L, Xu J, You N, et al. Study on the new strategy and key techniques for accurate prevention and treatment of nonalcoholic steatohepatitis based on intestinal target bacteria. Medicine 2020; 99(50): e22867.
[http://dx.doi.org/10.1097/MD.0000000000022867] [PMID: 33327227]
[59]
Cao S, Meng X, Li Y, et al. Bile acids elevated in chronic periaortitis could activate farnesoid-X-receptor to suppress IL-6 production by macrophages. Front Immunol 2021; 12: 632864.
[http://dx.doi.org/10.3389/fimmu.2021.632864] [PMID: 33968024]
[60]
Di Vincenzo F, Puca P, Lopetuso LR, et al. Bile acid-related regulation of mucosal inflammation and intestinal motility: From pathogenesis to therapeutic application in IBD and microscopic colitis. Nutrients 2022; 14(13): 2664.
[http://dx.doi.org/10.3390/nu14132664] [PMID: 35807844]
[61]
Usami M, Miyoshi M, Yamashita H. Gut microbiota and host metabolism in liver cirrhosis. World J Gastroenterol 2015; 21(41): 11597-608.
[http://dx.doi.org/10.3748/wjg.v21.i41.11597] [PMID: 26556989]
[62]
Sperandeo P, Martorana AM, Polissi A. Lipopolysaccharide biogenesis and transport at the outer membrane of Gram-negative bacteria. Biochim Biophys Acta Mol Cell Biol Lipids 2017; 1862(11): 1451-60.
[http://dx.doi.org/10.1016/j.bbalip.2016.10.006] [PMID: 27760389]
[63]
Steimle A, Autenrieth IB, Frick JS. Structure and function: Lipid A modifications in commensals and pathogens. Int J Med Microbiol 2016; 306(5): 290-301.
[http://dx.doi.org/10.1016/j.ijmm.2016.03.001] [PMID: 27009633]
[64]
Amor K, Heinrichs DE, Frirdich E, Ziebell K, Johnson RP, Whitfield C. Distribution of core oligosaccharide types in lipopolysaccharides from Escherichia coli. Infect Immun 2000; 68(3): 1116-24.
[http://dx.doi.org/10.1128/IAI.68.3.1116-1124.2000] [PMID: 10678915]
[65]
Lerouge I, Vanderleyden J. O-antigen structural variation: Mechanisms and possible roles in animal/plant–microbe interactions. FEMS Microbiol Rev 2002; 26(1): 17-47.
[http://dx.doi.org/10.1111/j.1574-6976.2002.tb00597.x] [PMID: 12007641]
[66]
Wexler AG, Goodman AL. An insider’s perspective: Bacteroides as a window into the microbiome. Nat Microbiol 2017; 2(5): 17026.
[http://dx.doi.org/10.1038/nmicrobiol.2017.26] [PMID: 28440278]
[67]
Ma N, Zhang J, Reiter RJ, Ma X. Melatonin mediates mucosal immune cells, microbial metabolism, and rhythm crosstalk: A therapeutic target to reduce intestinal inflammation. Med Res Rev 2020; 40(2): 606-32.
[http://dx.doi.org/10.1002/med.21628] [PMID: 31420885]
[68]
Farsani AZ, Farsani YM, Arab S, Forouzanfar F, Yadollahi M, Asgharzade S. Prediction and analysis of microRNAs involved in COVID-19 inflammatory processes associated with the NF-kB and JAK/STAT signaling pathways. Int Immunopharmacol 2021; 100: 108071.
[http://dx.doi.org/10.1016/j.intimp.2021.108071] [PMID: 34482267]
[69]
Hennessy EJ, Parker AE, O’Neill LAJ. Targeting Toll-like receptors: Emerging therapeutics? Nat Rev Drug Discov 2010; 9(4): 293-307.
[http://dx.doi.org/10.1038/nrd3203] [PMID: 20380038]
[70]
Getachew A, Hussain M, Huang X, Li Y. Toll-like receptor 2 signaling in liver pathophysiology. Life Sci 2021; 284: 119941.
[http://dx.doi.org/10.1016/j.lfs.2021.119941] [PMID: 34508761]
[71]
Olivieri F, Rippo MR, Prattichizzo F, et al. Toll like receptor signaling in “inflammaging”: MicroRNA as new players. Immun Ageing 2013; 10(1): 11.
[http://dx.doi.org/10.1186/1742-4933-10-11] [PMID: 23506673]
[72]
Mao K, Chen S, Chen M, et al. Nitric oxide suppresses NLRP3 inflammasome activation and protects against LPS-induced septic shock. Cell Res 2013; 23(2): 201-12.
[http://dx.doi.org/10.1038/cr.2013.6] [PMID: 23318584]
[73]
Schroder K, Sagulenko V, Zamoshnikova A, et al. Acute lipopolysaccharide priming boosts inflammasome activation independently of inflammasome sensor induction. Immunobiology 2012; 217(12): 1325-9.
[http://dx.doi.org/10.1016/j.imbio.2012.07.020] [PMID: 22898390]
[74]
Ding J, Shao F. SnapShot: The noncanonical inflammasome. Cell 2017; 168: 544-4. e541.
[http://dx.doi.org/10.1016/j.cell.2017.01.008]
[75]
Carding S, Verbeke K, Vipond DT, Corfe BM, Owen LJ. Dysbiosis of the gut microbiota in disease. Microb Ecol Health Dis 2015; 26: 26191.
[PMID: 25651997]
[76]
Martel J, Chang SH, Ko YF, Hwang TL, Young JD, Ojcius DM. Gut barrier disruption and chronic disease. Trends Endocrinol Metab 2022; 33(4): 247-65.
[http://dx.doi.org/10.1016/j.tem.2022.01.002] [PMID: 35151560]
[77]
Leung C, Rivera L, Furness JB, Angus PW. The role of the gut microbiota in NAFLD. Nat Rev Gastroenterol Hepatol 2016; 13(7): 412-25.
[http://dx.doi.org/10.1038/nrgastro.2016.85] [PMID: 27273168]
[78]
Zhang S, Zhao J, Xie F, et al. Dietary fiber‐derived short‐chain fatty acids: A potential therapeutic target to alleviate obesity‐related nonalcoholic fatty liver disease. Obes Rev 2021; 22(11): e13316.
[http://dx.doi.org/10.1111/obr.13316] [PMID: 34279051]
[79]
Bai J, Li Y, Li T, et al. Comparison of different soluble dietary fibers during the in vitro fermentation process. J Agric Food Chem 2021; 69(26): 7446-57.
[http://dx.doi.org/10.1021/acs.jafc.1c00237] [PMID: 33951908]
[80]
van der Hee B, Wells JM. Microbial regulation of host physiology by short-chain fatty acids. Trends Microbiol 2021; 29(8): 700-12.
[http://dx.doi.org/10.1016/j.tim.2021.02.001] [PMID: 33674141]
[81]
Ghislain J, Poitout V. Targeting lipid GPCRs to treat type 2 diabetes mellitus — Progress and challenges. Nat Rev Endocrinol 2021; 17(3): 162-75.
[http://dx.doi.org/10.1038/s41574-020-00459-w] [PMID: 33495605]
[82]
Tolhurst G, Heffron H, Lam YS, et al. Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein-coupled receptor FFAR2. Diabetes 2012; 61(2): 364-71.
[http://dx.doi.org/10.2337/db11-1019] [PMID: 22190648]
[83]
Felix JB, Cox AR, Hartig SM. Acetyl-CoA and metabolite fluxes regulate white adipose tissue expansion. Trends Endocrinol Metab 2021; 32(5): 320-32.
[http://dx.doi.org/10.1016/j.tem.2021.02.008] [PMID: 33712368]
[84]
Taylor SA, Green RM. Bile acids, microbiota and metabolism. Hepatology 2018; 68(4): 1229-31.
[http://dx.doi.org/10.1002/hep.30078] [PMID: 29729182]
[85]
Manley S, Ding W. Role of farnesoid X receptor and bile acids in alcoholic liver disease. Acta Pharm Sin B 2015; 5(2): 158-67.
[http://dx.doi.org/10.1016/j.apsb.2014.12.011] [PMID: 26579442]
[86]
Tavares AH, Magalhães KG, Almeida RDN, Correa R, Burgel PH, Bocca AL. NLRP3 inflammasome activation by Paracoccidioides brasiliensis. PLoS Negl Trop Dis 2013; 7(12): e2595.
[http://dx.doi.org/10.1371/journal.pntd.0002595] [PMID: 24340123]
[87]
Fuchs CD, Trauner M. Role of bile acids and their receptors in gastrointestinal and hepatic pathophysiology. Nat Rev Gastroenterol Hepatol 2022; 19(7): 432-50.
[http://dx.doi.org/10.1038/s41575-021-00566-7] [PMID: 35165436]
[88]
Dawson PA, Karpen SJ. Intestinal transport and metabolism of bile acids. J Lipid Res 2015; 56(6): 1085-99.
[http://dx.doi.org/10.1194/jlr.R054114] [PMID: 25210150]
[89]
Rao A, Haywood J, Craddock AL, Belinsky MG, Kruh GD, Dawson PA. The organic solute transporter α-β, Ostα-Ostβ, is essential for intestinal bile acid transport and homeostasis. Proc Natl Acad Sci 2008; 105(10): 3891-6.
[http://dx.doi.org/10.1073/pnas.0712328105] [PMID: 18292224]
[90]
Simbrunner B, Trauner M, Reiberger T. Review article: Therapeutic aspects of bile acid signalling in the gut‐liver axis. Aliment Pharmacol Ther 2021; 54(10): 1243-62.
[http://dx.doi.org/10.1111/apt.16602] [PMID: 34555862]
[91]
Gadaleta RM, van Mil SWC, Oldenburg B, Siersema PD, Klomp LWJ, van Erpecum KJ. Bile acids and their nuclear receptor FXR: Relevance for hepatobiliary and gastrointestinal disease. Biochim Biophys Acta Mol Cell Biol Lipids 2010; 1801(7): 683-92.
[http://dx.doi.org/10.1016/j.bbalip.2010.04.006] [PMID: 20399894]
[92]
Collins SL, Stine JG, Bisanz JE, Okafor CD, Patterson AD. Bile acids and the gut microbiota: Metabolic interactions and impacts on disease. Nat Rev Microbiol 2022; 21(4): 236-47.
[PMID: 36253479]
[93]
Tekin T, Dincer E. Effect of resistant starch types as a prebiotic. Appl Microbiol Biotechnol 2023; 107(2-3): 491-515.
[http://dx.doi.org/10.1007/s00253-022-12325-y] [PMID: 36512032]
[94]
Stiemsma LT, Nakamura RE, Nguyen JG, Michels KB. Does consumption of fermented foods modify the human gut microbiota? J Nutr 2020; 150(7): 1680-92.
[http://dx.doi.org/10.1093/jn/nxaa077] [PMID: 32232406]
[95]
Hill C, Guarner F, Reid G, et al. The international scientific association for probiotics and prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol 2014; 11(8): 506-14.
[http://dx.doi.org/10.1038/nrgastro.2014.66] [PMID: 24912386]
[96]
Mokhtarzade M, Shamsi MM, Abolhasani M, et al. Home-based exercise training influences gut bacterial levels in multiple sclerosis. Complement Ther Clin Pract 2021; 45: 101463.
[http://dx.doi.org/10.1016/j.ctcp.2021.101463] [PMID: 34348201]
[97]
Liu KY, Nakatsu CH, Jones-Hall Y, Kozik A, Jiang Q. Vitamin E alpha- and gamma-tocopherol mitigate colitis, protect intestinal barrier function and modulate the gut microbiota in mice. Free Radic Biol Med 2021; 163: 180-9.
[http://dx.doi.org/10.1016/j.freeradbiomed.2020.12.017] [PMID: 33352218]
[98]
Chen D, Jin D, Huang S, et al. Clostridium butyricum, a butyrate-producing probiotic, inhibits intestinal tumor development through modulating Wnt signaling and gut microbiota. Cancer Lett 2020; 469: 456-67.
[http://dx.doi.org/10.1016/j.canlet.2019.11.019] [PMID: 31734354]
[99]
Ulluwishewa D, Anderson RC, McNabb WC, Moughan PJ, Wells JM, Roy NC. Regulation of tight junction permeability by intestinal bacteria and dietary components. J Nutr 2011; 141(5): 769-76.
[http://dx.doi.org/10.3945/jn.110.135657] [PMID: 21430248]
[100]
Isolauri E, Sütas Y, Kankaanpää P, Arvilommi H, Salminen S. Probiotics: Effects on immunity. Am J Clin Nutr 2001; 73(S2): 444s-50s.
[http://dx.doi.org/10.1093/ajcn/73.2.444s] [PMID: 11157355]
[101]
Parnell JA, Raman M, Rioux KP, Reimer RA. The potential role of prebiotic fibre for treatment and management of non‐alcoholic fatty liver disease and associated obesity and insulin resistance. Liver Int 2012; 32(5): 701-11.
[http://dx.doi.org/10.1111/j.1478-3231.2011.02730.x] [PMID: 22221818]
[102]
Safari Z, Gérard P. The links between the gut microbiome and non-alcoholic fatty liver disease (NAFLD). Cell Mol Life Sci 2019; 76(8): 1541-58.
[http://dx.doi.org/10.1007/s00018-019-03011-w] [PMID: 30683985]
[103]
Kaur KK, Allahbadia G, Singh M. The Association of Non Viral Liver Diseases from NAFLD to NASH to HCC with the pandemic of obesity, type 2 diabetes, or diabesity & metabolic syndrome–etiopathogenetic correlation along with utilization for diagnostic &therapeutic purposes-a systematic review. J Endocrinol 2021; 3: 10-34.
[104]
Mizuno S, Masaoka T, Naganuma M, et al. Bifidobacterium-rich fecal donor may be a positive predictor for successful fecal microbiota transplantation in patients with irritable bowel syndrome. Digestion 2017; 96(1): 29-38.
[http://dx.doi.org/10.1159/000471919] [PMID: 28628918]
[105]
Zhou D, Pan Q, Shen F, et al. Total fecal microbiota transplantation alleviates high-fat diet-induced steatohepatitis in mice via beneficial regulation of gut microbiota. Sci Rep 2017; 7(1): 1529.
[http://dx.doi.org/10.1038/s41598-017-01751-y] [PMID: 28484247]

© 2024 Bentham Science Publishers | Privacy Policy