An Entity of Type: software, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

Random indexing is a dimensionality reduction method and computational framework for distributional semantics, based on the insight that very-high-dimensional vector space model implementations are impractical, that models need not grow in dimensionality when new items (e.g. new terminology) are encountered, and that a high-dimensional model can be projected into a space of lower dimensionality without compromising L2 distance metrics if the resulting dimensions are chosen appropriately.

Property Value
dbo:abstract
  • Random indexing is a dimensionality reduction method and computational framework for distributional semantics, based on the insight that very-high-dimensional vector space model implementations are impractical, that models need not grow in dimensionality when new items (e.g. new terminology) are encountered, and that a high-dimensional model can be projected into a space of lower dimensionality without compromising L2 distance metrics if the resulting dimensions are chosen appropriately. This is the original point of the random projection approach to dimension reduction first formulated as the Johnson–Lindenstrauss lemma, and locality-sensitive hashing has some of the same starting points. Random indexing, as used in representation of language, originates from the work of Pentti Kanerva on sparse distributed memory, and can be described as an incremental formulation of a random projection. It can be also verified that random indexing is a random projection technique for the construction of Euclidean spaces—i.e. L2 normed vector spaces. In Euclidean spaces, random projections are elucidated using the Johnson–Lindenstrauss lemma. The TopSig technique extends the random indexing model to produce bit vectors for comparison with the Hamming distance similarity function. It is used for improving the performance of information retrieval and document clustering. In a similar line of research, Random Manhattan Integer Indexing (RMII) is proposed for improving the performance of the methods that employ the Manhattan distance between text units. Many random indexing methods primarily generate similarity from co-occurrence of items in a corpus. Reflexive Random Indexing (RRI) generates similarity from co-occurrence and from shared occurrence with other items. (en)
  • Случайное индексирование — это метод понижения размерности и один из подходов дистрибутивной семантики, основанный на убеждении, что варианты векторной модели (Vector Space Model) с высокой размерностью малоприменимы на практике и что модели не должны наращивать размерность при появлении не виденных ранее объектов (термов, документов и т. д.) Предполагается возможность проецирования модели с большими размерностями в пространство с меньшими — без ущерба для L2-метрик, если правильно подобрать итоговые измерения, что и представляет собой основной подход к случайным проекциям как методу понижения размерности, сформулированный как лемма Джонсона — Линденштрауса. LSH устроен аналогично. Случайное индексирование как представление объектов естественного языка впервые предлагается в работе о и может быть описано как инкрементальное построение случайных проекций. Можно также показать, что случайное индексирование — это вариант случайных проекций для построения евклидовых пространств. (ru)
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 37697003 (xsd:integer)
dbo:wikiPageLength
  • 5320 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1044010457 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dct:subject
gold:hypernym
rdf:type
rdfs:comment
  • Random indexing is a dimensionality reduction method and computational framework for distributional semantics, based on the insight that very-high-dimensional vector space model implementations are impractical, that models need not grow in dimensionality when new items (e.g. new terminology) are encountered, and that a high-dimensional model can be projected into a space of lower dimensionality without compromising L2 distance metrics if the resulting dimensions are chosen appropriately. (en)
  • Случайное индексирование — это метод понижения размерности и один из подходов дистрибутивной семантики, основанный на убеждении, что варианты векторной модели (Vector Space Model) с высокой размерностью малоприменимы на практике и что модели не должны наращивать размерность при появлении не виденных ранее объектов (термов, документов и т. д.) Предполагается возможность проецирования модели с большими размерностями в пространство с меньшими — без ущерба для L2-метрик, если правильно подобрать итоговые измерения, что и представляет собой основной подход к случайным проекциям как методу понижения размерности, сформулированный как лемма Джонсона — Линденштрауса. (ru)
rdfs:label
  • Random indexing (en)
  • Случайное индексирование (ru)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License