An Entity of Type: road junction, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

In mathematics, a hyperplane section of a subset X of projective space Pn is the intersection of X with some hyperplane H. In other words, we look at the subset XH of those elements x of X that satisfy the single linear condition L = 0 defining H as a linear subspace. Here L or H can range over the dual projective space of non-zero linear forms in the homogeneous coordinates, up to scalar multiplication.

Property Value
dbo:abstract
  • In mathematics, a hyperplane section of a subset X of projective space Pn is the intersection of X with some hyperplane H. In other words, we look at the subset XH of those elements x of X that satisfy the single linear condition L = 0 defining H as a linear subspace. Here L or H can range over the dual projective space of non-zero linear forms in the homogeneous coordinates, up to scalar multiplication. From a geometrical point of view, the most interesting case is when X is an algebraic subvariety; for more general cases, in mathematical analysis, some analogue of the Radon transform applies. In algebraic geometry, assuming therefore that X is V, a subvariety not lying completely in any H, the hyperplane sections are algebraic sets with irreducible components all of dimension dim(V) − 1. What more can be said is addressed by a collection of results known collectively as Bertini's theorem. The topology of hyperplane sections is studied in the topic of the Lefschetz hyperplane theorem and its refinements. Because the dimension drops by one in taking hyperplane sections, the process is potentially an inductive method for understanding varieties of higher dimension. A basic tool for that is the Lefschetz pencil. (en)
dbo:wikiPageID
  • 3459767 (xsd:integer)
dbo:wikiPageLength
  • 1541 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 705318963 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
gold:hypernym
rdf:type
rdfs:comment
  • In mathematics, a hyperplane section of a subset X of projective space Pn is the intersection of X with some hyperplane H. In other words, we look at the subset XH of those elements x of X that satisfy the single linear condition L = 0 defining H as a linear subspace. Here L or H can range over the dual projective space of non-zero linear forms in the homogeneous coordinates, up to scalar multiplication. (en)
rdfs:label
  • Hyperplane section (en)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License