dbo:abstract
|
- The concept of a double group was introduced by Hans Bethe for the quantitative treatment of magnetochemistry of complexes of ions like Ti3+, that have a single unpaired electron in the metal ion's valence electron shell and to complexes of ions like Cu2+ which have a single "vacancy" in the valence shell. In the specific instances of complexes of metal ions that have the electronic configurations 3d1, 3d9, 4f1 and 4f13, rotation by 360° must be treated as a symmetry operation R, in a separate class from the identity operation E. This arises from the nature of the wave function for electron spin. A double group is formed by combining a molecular point group with the group {E, R} that has two symmetry operations, identity and rotation by 360°. The double group has twice the number of symmetry operations compared to the molecular point group. (en)
|
dbo:thumbnail
| |
dbo:wikiPageID
| |
dbo:wikiPageLength
|
- 11782 (xsd:nonNegativeInteger)
|
dbo:wikiPageRevisionID
| |
dbo:wikiPageWikiLink
| |
dbp:wikiPageUsesTemplate
| |
dct:subject
| |
rdfs:comment
|
- The concept of a double group was introduced by Hans Bethe for the quantitative treatment of magnetochemistry of complexes of ions like Ti3+, that have a single unpaired electron in the metal ion's valence electron shell and to complexes of ions like Cu2+ which have a single "vacancy" in the valence shell. (en)
|
rdfs:label
| |
owl:sameAs
| |
prov:wasDerivedFrom
| |
foaf:depiction
| |
foaf:isPrimaryTopicOf
| |
is dbo:wikiPageRedirects
of | |
is dbo:wikiPageWikiLink
of | |
is foaf:primaryTopic
of | |