An Entity of Type: software, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

A constrained conditional model (CCM) is a machine learning and inference framework that augments the learning of conditional (probabilistic or discriminative) models with declarative constraints. The constraint can be used as a way to incorporate expressive prior knowledge into the model and bias the assignments made by the learned model to satisfy these constraints. The framework can be used to support decisions in an expressive output space while maintaining modularity and tractability of training and inference.

Property Value
dbo:abstract
  • A constrained conditional model (CCM) is a machine learning and inference framework that augments the learning of conditional (probabilistic or discriminative) models with declarative constraints. The constraint can be used as a way to incorporate expressive prior knowledge into the model and bias the assignments made by the learned model to satisfy these constraints. The framework can be used to support decisions in an expressive output space while maintaining modularity and tractability of training and inference. Models of this kind have recently attracted much attention within the natural language processing (NLP) community.Formulating problems as constrained optimization problems over the output of learned models has several advantages. It allows one to focus on the modeling of problems by providing the opportunity to incorporate domain-specific knowledge as global constraints using a first order language. Using this declarative framework frees the developer from low level feature engineering while capturing the problem's domain-specific properties and guarantying exact inference. From a machine learning perspective it allows decoupling the stage of model generation (learning) from that of the constrained inference stage, thus helping to simplify the learning stage while improving the quality of the solutions. For example, in the case of generating compressed sentences, rather than simply relying on a language model to retain the most commonly used n-grams in the sentence, constraints can be used to ensure that if a modifier is kept in the compressed sentence, its subject will also be kept. (en)
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 28255458 (xsd:integer)
dbo:wikiPageLength
  • 11692 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1100670963 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dcterms:subject
gold:hypernym
rdf:type
rdfs:comment
  • A constrained conditional model (CCM) is a machine learning and inference framework that augments the learning of conditional (probabilistic or discriminative) models with declarative constraints. The constraint can be used as a way to incorporate expressive prior knowledge into the model and bias the assignments made by the learned model to satisfy these constraints. The framework can be used to support decisions in an expressive output space while maintaining modularity and tractability of training and inference. (en)
rdfs:label
  • Constrained conditional model (en)
owl:sameAs
prov:wasDerivedFrom
foaf:isPrimaryTopicOf
is dbo:wikiPageDisambiguates of
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License