An Entity of Type: Thing, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

Consensus clustering is a method of aggregating (potentially conflicting) results from multiple clustering algorithms. Also called cluster ensembles or aggregation of clustering (or partitions), it refers to the situation in which a number of different (input) clusterings have been obtained for a particular dataset and it is desired to find a single (consensus) clustering which is a better fit in some sense than the existing clusterings. Consensus clustering is thus the problem of reconciling clustering information about the same data set coming from different sources or from different runs of the same algorithm. When cast as an optimization problem, consensus clustering is known as median partition, and has been shown to be NP-complete, even when the number of input clusterings is three.

Property Value
dbo:abstract
  • Consensus clustering is a method of aggregating (potentially conflicting) results from multiple clustering algorithms. Also called cluster ensembles or aggregation of clustering (or partitions), it refers to the situation in which a number of different (input) clusterings have been obtained for a particular dataset and it is desired to find a single (consensus) clustering which is a better fit in some sense than the existing clusterings. Consensus clustering is thus the problem of reconciling clustering information about the same data set coming from different sources or from different runs of the same algorithm. When cast as an optimization problem, consensus clustering is known as median partition, and has been shown to be NP-complete, even when the number of input clusterings is three. Consensus clustering for unsupervised learning is analogous to ensemble learning in supervised learning. (en)
dbo:thumbnail
dbo:wikiPageExternalLink
dbo:wikiPageID
  • 21542452 (xsd:integer)
dbo:wikiPageLength
  • 22682 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 1114054845 (xsd:integer)
dbo:wikiPageWikiLink
dbp:bot
  • InternetArchiveBot (en)
dbp:date
  • November 2019 (en)
dbp:fixAttempted
  • yes (en)
dbp:wikiPageUsesTemplate
dct:subject
gold:hypernym
rdfs:comment
  • Consensus clustering is a method of aggregating (potentially conflicting) results from multiple clustering algorithms. Also called cluster ensembles or aggregation of clustering (or partitions), it refers to the situation in which a number of different (input) clusterings have been obtained for a particular dataset and it is desired to find a single (consensus) clustering which is a better fit in some sense than the existing clusterings. Consensus clustering is thus the problem of reconciling clustering information about the same data set coming from different sources or from different runs of the same algorithm. When cast as an optimization problem, consensus clustering is known as median partition, and has been shown to be NP-complete, even when the number of input clusterings is three. (en)
rdfs:label
  • Consensus clustering (en)
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License