An Entity of Type: Thing, from Named Graph: http://dbpedia.org, within Data Space: dbpedia.org

Bloom filters are space-efficient probabilistic data structures used to test whether an element is a part of a set. Bloom filters require much less space than other data structures for representing sets, however the downside of Bloom filters is that there is a false positive rate when querying the data structure. Since multiple elements may have the same hash values for a number of hash functions, then there is a probability that querying for a non-existent element may return a positive if another element with the same hash values has been added to the Bloom filter. Assuming that the hash function has equal probability of selecting any index of the Bloom filter, the false positive rate of querying a Bloom filter is a function of the number of bits, number of hash functions and number of el

Property Value
dbo:abstract
  • مرشحات بلوم هي هياكل بيانات احتمالية موفرة للمساحة تُستخدم لاختبار ما، إذا كان العنصر جزءًا من مجموعة. تتطلب فلاتر بلوم مساحة أقل بكثير من هياكل البيانات الأخرى؛ لتمثيل المجموعات، ولكن الجانب السلبي لفلاتر بلوم هو أن هناك معدل إيجابي كاذب عند الاستعلام عن بنية البيانات. نظرًا لأن العناصر المتعددة قد يكون لها نفس قيم التجزئة لعدد من وظائف التجزئة، فهناك احتمال أن يؤدي الاستعلام عن عنصر غير موجود إلى إرجاع عنصر إيجابي إذا تمت إضافة عنصر آخر بنفس قيم التجزئة إلى مرشح (Bloom). بافتراض أن دالة التجزئة لها احتمالية متساوية لاختيار أي فهرس لمرشح بلوم، فإن المعدل الإيجابي الكاذب للاستعلام عن مرشح بلوم هو دالة لعدد البتات وعدد وظائف التجزئة وعدد عناصر مرشح بلوم. يسمح هذا للمستخدم بإدارة مخاطر الحصول على نتيجة إيجابية خاطئة من خلال المساومة على مزايا المساحة لمرشح بلوم. تستخدم مرشحات بلوم في المقام الأول في المعلوماتية الحيوية لاختبار وجود k-mer في تسلسل أو مجموعة من التسلسلات. يتم فهرسة k-mers للتسلسل في مرشح (Bloom)، ويمكن الاستعلام عن أي k-mer من نفس الحجم مقابل مرشح Bloom. هذا هو البديل المفضل لتجزئة k-mers في تسلسل مع جدول تجزئة، خاصة عندما يكون التسلسل طويلًا جدًا، حيث يتطلب تخزين أعداد كبيرة من k-mers في الذاكرة. (ar)
  • Bloom filters are space-efficient probabilistic data structures used to test whether an element is a part of a set. Bloom filters require much less space than other data structures for representing sets, however the downside of Bloom filters is that there is a false positive rate when querying the data structure. Since multiple elements may have the same hash values for a number of hash functions, then there is a probability that querying for a non-existent element may return a positive if another element with the same hash values has been added to the Bloom filter. Assuming that the hash function has equal probability of selecting any index of the Bloom filter, the false positive rate of querying a Bloom filter is a function of the number of bits, number of hash functions and number of elements of the Bloom filter. This allows the user to manage the risk of a getting a false positive by compromising on the space benefits of the Bloom filter. Bloom filters are primarily used in bioinformatics to test the existence of a k-mer in a sequence or set of sequences. The k-mers of the sequence are indexed in a Bloom filter, and any k-mer of the same size can be queried against the Bloom filter. This is a preferable alternative to hashing the k-mers of a sequence with a hash table, particularly when the sequence is very long, since it is very demanding to store large numbers of k-mers in memory. (en)
dbo:thumbnail
dbo:wikiPageID
  • 60104849 (xsd:integer)
dbo:wikiPageLength
  • 13286 (xsd:nonNegativeInteger)
dbo:wikiPageRevisionID
  • 978647736 (xsd:integer)
dbo:wikiPageWikiLink
dbp:wikiPageUsesTemplate
dct:subject
rdfs:comment
  • مرشحات بلوم هي هياكل بيانات احتمالية موفرة للمساحة تُستخدم لاختبار ما، إذا كان العنصر جزءًا من مجموعة. تتطلب فلاتر بلوم مساحة أقل بكثير من هياكل البيانات الأخرى؛ لتمثيل المجموعات، ولكن الجانب السلبي لفلاتر بلوم هو أن هناك معدل إيجابي كاذب عند الاستعلام عن بنية البيانات. نظرًا لأن العناصر المتعددة قد يكون لها نفس قيم التجزئة لعدد من وظائف التجزئة، فهناك احتمال أن يؤدي الاستعلام عن عنصر غير موجود إلى إرجاع عنصر إيجابي إذا تمت إضافة عنصر آخر بنفس قيم التجزئة إلى مرشح (Bloom). بافتراض أن دالة التجزئة لها احتمالية متساوية لاختيار أي فهرس لمرشح بلوم، فإن المعدل الإيجابي الكاذب للاستعلام عن مرشح بلوم هو دالة لعدد البتات وعدد وظائف التجزئة وعدد عناصر مرشح بلوم. يسمح هذا للمستخدم بإدارة مخاطر الحصول على نتيجة إيجابية خاطئة من خلال المساومة على مزايا المساحة لمرشح بلوم. (ar)
  • Bloom filters are space-efficient probabilistic data structures used to test whether an element is a part of a set. Bloom filters require much less space than other data structures for representing sets, however the downside of Bloom filters is that there is a false positive rate when querying the data structure. Since multiple elements may have the same hash values for a number of hash functions, then there is a probability that querying for a non-existent element may return a positive if another element with the same hash values has been added to the Bloom filter. Assuming that the hash function has equal probability of selecting any index of the Bloom filter, the false positive rate of querying a Bloom filter is a function of the number of bits, number of hash functions and number of el (en)
rdfs:label
  • مرشحات بلوم في المعلوماتية الحيوية (ar)
  • Bloom filters in bioinformatics (en)
owl:sameAs
prov:wasDerivedFrom
foaf:depiction
foaf:isPrimaryTopicOf
is dbo:wikiPageRedirects of
is dbo:wikiPageWikiLink of
is foaf:primaryTopic of
Powered by OpenLink Virtuoso    This material is Open Knowledge     W3C Semantic Web Technology     This material is Open Knowledge    Valid XHTML + RDFa
This content was extracted from Wikipedia and is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License