×

A three-parameter difference Hamiltonian operator, corresponding pair of Hamiltonian operators and a family of Liouville integrable lattice equations. (English) Zbl 1221.37154

Summary: A difference Hamiltonian operator involved three arbitrary real parameters is introduced. When these parameters in the difference Hamiltonian operator are properly chosen, we obtain a pair of difference Hamiltonian operators. Then, using Magri’s scheme of bi-Hamiltonian formulation, we construct a family of Liouville integrable lattice equations. Finally, the discrete zero curvature representation of obtained family is presented.

MSC:

37K60 Lattice dynamics; integrable lattice equations
37K05 Hamiltonian structures, symmetries, variational principles, conservation laws (MSC2010)
37K10 Completely integrable infinite-dimensional Hamiltonian and Lagrangian systems, integration methods, integrability tests, integrable hierarchies (KdV, KP, Toda, etc.)
37K15 Inverse spectral and scattering methods for infinite-dimensional Hamiltonian and Lagrangian systems
39A70 Difference operators
Full Text: DOI

References:

[1] Ablowitz, M.; Ladik, J., J Math Phys, 16, 598 (1975) · Zbl 0296.34062
[2] Ablowitz, M. J.; Segur, H., Solitons and the inverse scattering transform (1981), SIAM: SIAM Philadelphia, PA · Zbl 0472.35002
[3] Toda, M., Theory of nonlinear lattices (1981), Springer: Springer Berlin · Zbl 0465.70014
[4] Ruijsenaars, S. N., Commun Math Phys, 133, 217 (1990) · Zbl 0719.58019
[5] Tu, G. Z., J Phys A Math Gen, 23, 3903 (1990)
[6] Oevel, W.; Zhang, H.; Fuchssteiner, B., Prog Theor Phys, 81, 294 (1989)
[7] Blaszak, M.; Marciniak, K., J Math Phys, 35, 4661 (1994) · Zbl 0823.58013
[8] Ma, W. X.; Xu, X. X., J Phys A Math Gen, 37, 1323 (2004) · Zbl 1075.37030
[9] Ma WX, Geng XG. Bäcklund transformations of soliton systems from symmetry constraints. In: Proceedings of the AARMS-CRM workshop on Bäcklund & Darboux transformations: the geometry of soliton theory, Halifax, Canada; 1999.; Ma WX, Geng XG. Bäcklund transformations of soliton systems from symmetry constraints. In: Proceedings of the AARMS-CRM workshop on Bäcklund & Darboux transformations: the geometry of soliton theory, Halifax, Canada; 1999.
[10] Xu, X. X.; Zhang, Y. F., Commun Theor Phys (Beijing, China), 41, 321 (2004)
[11] Wu, Y. T.; Geng, X. G., J Phys A Math Gen, 31, L677 (1998) · Zbl 0931.35190
[12] Xu, X. X., Phys Lett A, 362, 205 (2007) · Zbl 1197.37095
[13] Ma, W. X.; Fuchssteiner, B., J Math Phys, 40, 2400 (1999) · Zbl 0984.37097
[14] Ma, W. X.; Xu, X. X.; Zhang, Y., J Math Phys, 47, 053501 (2006), 16 · Zbl 1111.37059
[15] Ma, W. X., J Phys A Math Theor, 40, 15055 (2007) · Zbl 1128.22014
[16] Magri, F., J Math Phys, 19, 1156 (1978) · Zbl 0383.35065
[17] Magri, F., A geometrical approach to the nonlinear solvable equations, (Boiti, M.; Pempinelli, F.; Soliani, G., Nonlinear evolution equations and dynamical systems. Nonlinear evolution equations and dynamical systems, Lecture notes in physics, vol. 120 (1980), Springer-Verlag: Springer-Verlag New York), 233-263
[18] Olver, P. J., Applications of Lie groups to differential equations (1986), Springer: Springer New York · Zbl 0588.22001
[19] Ma, W. X.; Pavlov, M., Phys Lett A, 246, 511 (1998)
[20] Ma, W. X.; Zhou, R. G., J Math Phys, 40, 4419 (1999) · Zbl 0947.35118
[21] Ma, W. X.; Xu, X. X., Int J Theor Phys, 43, 219 (2004) · Zbl 1058.37055
[22] Tu, G. Z.; Ma, W. X., J Partial Differ Equ, 5, 43 (1992) · Zbl 0751.58016
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.