×

Extensions of polynomial plank covering theorems. (English) Zbl 1542.46011

Let \(P_1, \ldots , P_N\) be complex polynomials of \(d\) complex variables, \(\delta_1, \ldots ,\delta_N\) be positive numbers, and \(B \subset \mathbb{C}^d\) be the ball of radius \(R\) (in the standard Euclidian distance) centered at zero. The central result of the paper says that, if \[ \sum_{k=1}^N \delta_k^2 \deg P_k \leqslant R^2, \] then there is a point \(u \in B\) which is, for every \(k\), at Euclidian distance at least \(\delta_k\) from the zero set of \(P_k\).
Defining a polynomial plank as a set of points whose distance to the zero set of a given polynomial does not exceed a given number, one reformulates this result in the spirit of covering by planks theorems, like in Section 3 of the survey [K. Ball, Convex geometry and functional analysis, in: Handbook of the geometry of Banach spaces. Volume 1. Amsterdam: Elsevier. 161–194 (2001; Zbl 1017.46004)].
The proof uses maximization of \(F(z)=\left| e^{-z^2/2}P_1^{\delta_1^2}(z)\cdots P_N^{\delta_N^2}(z)\right|\) on \(B\).
In the particular case of \(\deg P_k = 1\) for all \(k\), one gets an extension of the famous complex plank theorem due to K. M. Ball [Bull. Lond. Math. Soc. 33, No. 4, 433–442 (2001; Zbl 1030.46008)] to the case of planks that are not necessarily centrally symmetric.
Another result deals with real polynomials. Let \(P_1, \ldots, P_N \in \mathbb R [x_1, \dots , x_d]\) be polynomials with nonzero restrictions on the unit sphere \(S \subset \mathbb R^d\) and \(\delta_1, \ldots, \delta_N > 0\) be such that \[ \sum_{k=1}^N \delta_k \deg P_k \leqslant \frac{1}{e}. \] Then there exists a point \(p \in S\) such that, for every \(k = 1, \dots ,N\), the point \(p\) is at angular distance at least \(\delta_k\) from the intersection of the zero set of \(P_k\) with \(S\).
An open question, equivalent to Conjecture 1.8 from the previous paper of the same authors [Int. Math. Res. Not. 2023, No. 13, 11684–11700 (2023; Zbl 1526.46007)], is whether the constant \(\frac{1}{e}\) in the above result can be substituted by \(\frac{\pi}{2}\).

MSC:

46B20 Geometry and structure of normed linear spaces
46C05 Hilbert and pre-Hilbert spaces: geometry and topology (including spaces with semidefinite inner product)
52C99 Discrete geometry
52C17 Packing and covering in \(n\) dimensions (aspects of discrete geometry)
52C35 Arrangements of points, flats, hyperplanes (aspects of discrete geometry)
32A08 Polynomials and rational functions of several complex variables
51M16 Inequalities and extremum problems in real or complex geometry
90C23 Polynomial optimization

References:

[1] A.Akopyan, R.Karasev, and F.Petrov, Bang’s problem and symplectic invariants, J. Symplectic Geom.17 (2019), no. 6, 1579-1611. · Zbl 1461.52018
[2] J.Arias‐de Reyna, Gaussian variables, polynomials and permanents, Linear Algebra Appl.285 (1998), no. 1-3, 107-114. · Zbl 0934.15036
[3] K.Ball, The complex plank problem, Bull. Lond. Math. Soc.33 (2001), no. 4, 433-442. · Zbl 1030.46008
[4] K.Ball and M.Prodromou, A sharp combinatorial version of Vaaler’s theorem, Bull. Lond. Math. Soc.41 (2009), 853-858. · Zbl 1250.52008
[5] T.Bang, On covering by parallel‐strips, Matematisk Tidsskrift B.1950 (1950), 49-53. · Zbl 0039.39103
[6] T.Bang, A solution of the ‘plank problem’, Proc. Amer. Math. Soc.2 (1951), 990-993. · Zbl 0044.37802
[7] N.Bognár, On W. Fenchel’s solution of the plank problem, Acta Math. Acad. Sci. Hungar.12 (1961), 269-270. · Zbl 0101.40302
[8] D.Carando, D.Pinasco, and J. T.Rodríguez, Non‐linear plank problems and polynomial inequalities, Rev. Mat. Complut.30 (2017), no. 3, 507-523. · Zbl 1391.46058
[9] L.Fejes Tóth, Exploring a planet, Amer. Math. Monthly80 (1973), no. 9, 1043-1044. · Zbl 0274.52014
[10] A.Glazyrin, A.Polyanskii, and R.Karasev, Covering by planks and avoiding zeros of polynomials, Int. Math. Res. Not.2023 (2023), no. 13, 11684-11700. · Zbl 1526.46007
[11] Z.Jiang and A.Polyanskii, Proof of László Fejes Tóth’s zone conjecture, Geom. Funct. Anal.27 (2017), no. 6, 1367-1377. · Zbl 1394.52020
[12] A.Kavadjiklis and S. G.Kim, Plank type problems for polynomials on Banach spaces, J. Math. Anal. Appl.396 (2012), no. 2, 528-535. · Zbl 1258.46019
[13] H.Moese, Przyczynek do problemu A. Tarskiego: ‘O stopniu równoważności wieloka̧tów’ (English: A contribution to the problem of A. Tarski ‘On the degree of equivalence of polygons’), Parametr2 (1932), 305-309.
[14] O.Ortega‐Moreno, An optimal plank theorem, Proc. Amer. Math. Soc.149 (2021), no. 3, 1225-1237. · Zbl 1470.46034
[15] O.Ortega‐Moreno, The complex plank problem, revisited, Discrete Comput. Geom. (2022). https://doi.org/10.1007/s00454‐022‐00423‐7. · Zbl 1542.46012 · doi:10.1007/s00454‐022‐00423‐7
[16] D.Pinasco, Lower bounds for norms of products of polynomials via Bombieri inequality, Trans. Amer. Math. Soc.364 (2012), no. 8, 3993-4010. · Zbl 1283.30004
[17] A.Polyanskii, A cap covering theorem, Combinatorica41 (2021), no. 5, 695-702. · Zbl 1499.52030
[18] A.Tarski, O stopniu równoważności wieloka̧tów (English: On the degree of equivalence of polygons), Młody Matematyk1 (1931), 37-44.
[19] A.Tarski, Uwagi o stopniu równoważności wieloka̧tów (English: Remarks on the degree of equivalence of polygons), Parametr2 (1932), 310-314.
[20] Y.Zhao, Exploring a planet, revisited, Amer. Math. Monthly129 (2022), no. 7, 678-680. · Zbl 1494.52018
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.